Research Article
BibTex RIS Cite

Creating a hybrid environment via leap motion device for architecture students in digital age

Year 2025, Volume: 8 Issue: 2, 435 - 457, 28.10.2025
https://doi.org/10.37246/grid.1482382

Abstract

Digital environments define alternatives to physical realities. The merging of virtual and real spaces creates a “cybernetic space” that offers a new experience through bodily interaction. This study explores the potential of hybrid design techniques to create new forms of representation at the intersection of body, physical space, and virtual space. It also highlights the importance of interactive design environments in supporting spatial learning in design disciplines. The scope of the research involves developing a hybrid architectural design software based on gesture interaction that supports learning-by-doing in digital environments. A practice-based research methodology was adopted. Scenario-based evaluations were conducted through self-guided sessions where the researcher explored the functionality and experiential aspects of the system. Leap Motion—a device equipped with infrared cameras and sensors that captures hand gestures—was employed to enable intuitive interaction with three-dimensional architectural models. The findings suggest that such hybrid systems can enhance spatial awareness and encourage a body-based design experience in architectural education.

Ethical Statement

All procedures followed were in accordance with the ethical standards.

Thanks

We would like to thank Önder Orakoğlu and Dr.Emir Balkan for their support in creating the software and using the Leap Motion device.

References

  • Abdelhameed, W. A. (2013). Virtual reality use in architectural design studios: a case of studying structure and construction. Procedia Computer Science, 25, 220-230.
  • Akın, Ö. (1986). Psychology of architectural design. Pion, London.
  • Anderson, L., Esser, J., & Interrante, V. (2003). A virtual environment for conceptual design in architecture. Proceedings of the workshop on virtual environments, 57-63.
  • Bermudez, J., (1997), Cyber(Inter)Sections: looking into the real ımpact of the virtual in the architectural profession, Proceedings of the symposium on architectural design education: ıntersecting perspectives, ıdentities and approaches. Minneapolis, MN: College of Architecture & Landscape Architecture, 57-63.
  • Billinghurst, M., & Kato, H. (2002). Collaborative augmented reality. Communications of the ACM, 45(7), 64-70.
  • Carpo, M. (2017). The Second Digital Turn: Design Beyond Intelligence. Cambridge, MA: MIT Press.
  • Celani, G., & Vaz, C. E. V. (2021). Teaching digital design and fabrication in architecture: A review of pedagogical models. Design Studies, 74, 101005.
  • Chen, S. C., Hsiao, M. S., & She, H. C. (2015). The effects of static versus dynamic 3D representations on 10th grade students’ atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 53, 169-180.
  • Cobb, S., Neale, H., Crosier, J., & Wilson, J. R. (2002). Development and evaluation of virtual environments for education., Handbook of virtual environments, pp. 951-976.
  • Colomina, B. (1996). Privacy and Publicity: Modern Architecture as Mass Media. Cambridge, MA: MIT Press.
  • Colomina, B. (2019). X-Ray Architecture. Zürich: Lars Müller Publishers.
  • Dong, Y. (2024). Expanding reality and interactive systems: New paths to hybrid design shaping the future of architectural designs. International Journal of Education and Humanities, 17(2), 160–163.
  • Du, J., & Clayton, M. J. (2022). Effects of immersive virtual environments on spatial perception in architectural design education. Automation in Construction, 139, 104278.
  • Dunn, N. (2014). Architectural modelmaking second edition. Hachette UK.
  • Dutton, T. A., & Willenbrock, L. L. (1989). The design studio: an exploration of its traditions and potential. Journal of Architectural Education, 43, 53-55.
  • Dülgeroğlu, Y., & Yılmaz, G. (2022). Investigating the use of Leap Motion controller in architectural design education: Students’ experiences and spatial thinking skills. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-022-09728-w
  • Escobar, I., Acurio, A., Pruna, E., Mena, L., Pilatásig, M., Bucheli, J., ... & Robalino, R. (2018). Fine motor rehabilitation of children using the leap motion device–preliminary usability tests. In Trends and Advances in Information Systems and Technologies, 26, 1030-1039.
  • Falcao, C., Lemos, A. C., & Soares, M. (2015). Evaluation of natural user interface: A usability study based on the Leap Motion device. Procedia Manufacturing, 3, 4359–4364. https://doi.org/10.1016/j.promfg.2015.07.697
  • Gao, W., Jin, S., Zhai, W., Shen, S., Tian, Y., & Zhang, J. (2024). Study on the design of a non-contact interaction system using gestures: Framework and case study. Sustainability, 16(21), 9335. https://doi.org/10.3390/su16219335
  • Gaver, W. W. (1991). Technology affordances. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 79–84. https://doi.org/10.1145/108844.108856
  • Goh, E. S., Sunar, M. S., & Ismail, A. W. (2019). 3D object manipulation techniques in handheld mobile augmented reality interface: A review. IEEE Access, 7, 40581-40601.
  • Gürer, T. K., & Yücel, A. (2010). Bir paradigma olarak mimari temsilin incelenmesi. İtü Dergisi/a, 4(1), 84-96.
  • Hearst, M. A. (2011). 'Natural'search user interfaces. Communications of the ACM, 54(11), 60-67.
  • Ibrahim, R., & Rahimian, F. P. (2010). Comparison of CAD and manual sketching tools for teaching architectural design. Automation in Construction, 19(8), 978-987.
  • Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’97), 234–241. https://doi.org/10.1145/258549.258715
  • Isozaki, A., & Asada, A. (1999). Benzeştirilen köken, benzeştirilen son. Anytime Conference Proceedings, Mimarlar Derneği, Ankara.
  • Jacob, R. J. K. (1994). New human-computer interaction techniques. Human Machine Communication for Educational Systems Design, 129, 131–138.
  • Johnson, H., & Saniie, J. (2023). Distributed gesture controlled systems for human-machine interface. arXiv preprint arXiv:2304.06152. https://doi.org/10.48550/arXiv.2304.06152
  • Kalisperis, L. N., Otto, G., Muramoto, K., Gundrum, J. S., Masters, R., & Orland, B. (2002). Virtual reality/space visualization in design education: the VR-desktop initiative. Proceedings of eCAADe2002, design e-ducation: Connecting the Real and the Virtual, 64-71.
  • Knoll, W., & Hechinger, M. (2008). Architectural models: Construction techniques (2nd ed.). J. Ross Publishing.
  • Kolarevic, B., & Parlac, V. (2021). From Physical to Cyber-Physical: Architecture in the Age of Industry 4.0. Routledge.
  • Korayem, M. H., Madihi, M. A., & Vahidifar, V. (2021). Controlling surgical robot arm using leap motion controller with Kalman filter. Measurement, 178, 109372.
  • Leach, N. (2009). Digital morphogenesis. Architectural Design, 79(1), 32–37. https://doi.org/10.1002/ad.806
  • Linzey, M. (2001). On the secondness of architectural intuition. Journal of Architectural Education, 55(1), 43-50. Lynch, K. (1964). The image of the city. MIT press.
  • Maltzan, M. (2010). The model. Ed Michiel Riedijk, Architecture as a craft: Architecture, drawing, model and position. 197-213.
  • McLuhan, M. (1964). Understanding media: The extensions of man. London: McGraw Hill.
  • Menges, A. (2012). Material computation: Higher integration in morphogenetic design. Architectural Design, 82(2), 14–21. https://doi.org/10.1002/ad.1373
  • Merleau-Ponty, M. (2005). Algılanan dünya (4 b.). (Ö. Aygün, Trans.) İstanbul: Metis Yayıncılık.
  • Milovanovic, J., Gero, J. S., & Nakapan, W. (2021). The impact of immersive virtual reality on design cognition: A study in architectural education. Design Studies, 74, 101005.
  • Mitra, A., & Schwartz, R. (2003). From cyber space to cybernetic space: rethinking the relationship between real and virtual spaces. Journal of Computer Mediated Communication.
  • Nguyen, A. B. V. D., Leusmann, J., Mayer, S., & Vande Moere, A. (2025). Eliciting understandable architectonic gestures for robotic furniture through co-design improvisation. arXiv preprint arXiv:2501.01813. https://doi.org/10.48550/arXiv.2501.01813
  • Norman, F. (2001). Towards a paperless studio. Proceedings of the ARCC Spring Research Meeting Architectural Research Centers Consortium.
  • Novak, M. (1991). Liquid architectures in cyberspace. In Cyberspace: first steps, 225-254.
  • Ohol, A. Goudar, S. Shettigar, S. Anand, S. (2017) Touchless Touch Screen User Interface. International Journal of Technical Research and Applications. 43, 59-63.
  • Oxman, R. (2006). Theory and design in the first digital age. Design studies, 27(3), 229-265.
  • Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: Theory, knowledge, models and medium. Design Studies, 29(2), 99–120.
  • Özgen, D. S., Afacan, Y., & Sürer, E. (2021). Usability of virtual reality for basic design education:a comparative study with paper-based design. International Journal of Technology and Design Education, 31, 357-377.
  • Palumbo, M. L. (2000). New wombs: electronic bodies and architectural disorders. Springer Science & Business Media.
  • Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2020). Augmented reality in education: Current trends and future directions. Educational Technology Research and Development, 68(6), 3045–3069.
  • Picon, A. (2010). Digital Culture in Architecture: An Introduction for the Design Professions. Basel: Birkhäuser.
  • Picon, A. (2021). Architecture and the digital: The environmental turn. In M. Salama, W. Wiedemann & N. Wilkinson (Eds.), The Changing Shape of Architecture: Further Cases of Integrating Research and Design in Practice (pp. 133–146). London: Routledge.
  • Potter, L. E., Araullo, J., & Carter, L. (2013). The leap motion controller: a view on sign language. In Proceedings of the 25th Australian computer-human interaction conference: augmentation, application, innovation, collaboration, 175-178.
  • Reffat, R. M. (2005). Collaborative digital architectural design learning within 3d virtual environments. The 10th international conference on computer aided architectural design research in asia.
  • Reffat, R.K., & Arabia S. (2007). Revitalizing architectural design studio teaching using ICT: Reflections on practical implementations International Journal of Education and Development Using ICT 3(1).
  • Sanders, E. B. (2006). Design research in 2006. Design Research Quarterly, 1(1), 1-8.
  • Sanders, E. B. (2013). Prototyping for design spaces of the future. Ed L. Valentine, In Prototype: Design and Craft in the 21st Century, London: Bloomsbury Academic, 59–73.
  • Schmitt, G. (2001). Introduction, Bits and spaces: architecture and computing for physical, virtual, hybrid realms: 33 projects by Architecture and CAAD, ETH Zurich, Ed. Maia Engeli, Birkhäuser Publishers for Architecture, Basel, Boston, Berlin.
  • Schnabel, M. A. (2004). Architectural design in virtual environments. (Doctoral Dissertation), University of Hongkong.
  • Schnabel, M. A. (2020). The reformation of architectural education through mixed realities. Architectural Design, 90(1), 110–115.
  • Segers, N. M., Achten, H. H., Timmermans, H. J. P., & De Vries, B. (2000). A comparison of computer-aided tools for architectural design. Design and decision support systems in architecture. Proceedings of the 5th International Conference.
  • Smith, A.C. (2004). Architectural model as machine: A new view of models from antiquity to the present day, Elsevier.
  • Soliman, S., Taha, D., & El Sayad, Z. (2019). Architectural education in the digital age: Computer applications: Between academia and practice. Alexandria Engineering Journal, 58(2), 809-818.
  • Soto, D., & Miller, D. (2023). Bridging the gap: Mixed reality tools in early architectural design. Technology|Architecture + Design, 7(2), 145–157.
  • Sun, R., Wu, Y. J., & Cai, Q. (2019). The effect of a virtual reality learning environment on learners’ spatial ability. Virtual Reality, 23(4), 385-398.
  • Taşlıoğlu, M. (2018). Sibernetik Mekân Deneyimleri. (Master’s Thesis), İstanbul Technical University, İstanbul.
  • Tölgyessy, M., Dekan, M., Rodina, J., & Duchoň, F. (2023). Analysis of the leap motion controller workspace for HRI gesture applications. Applied Sciences, 13(2), 742.
  • Treadaway, C. P. (2009). Hand e-craft: an investigation into hand use in digital creative practice. In Proceedings of the seventh ACM conference on Creativity and cognition, (pp. 185-194).
  • Tschumi, B. (2017). Mimarlık ve kopma (1 b.). (A. Tümertekin, Trans.) İstanbul: Janus Yayıncılık
  • Turan, B. O. (2011). 21. Yüzyıl tasarım ortamında süreç, biçim ve temsil ilişkisi. Megaron, 6(3).
  • Varınlıoğlu, G., Halıcı, S., & Alaçam, S. (2015). Computational approaches for basic design education: Pedagogical notes based on an intense student workshop. In XIX congresso da sociedade ibero Americana de Gráfica Digital 2015.
  • Vertegaal, R., & Poupyrev, I. (2008). Organic user interfaces. Communications of the ACM, 51(6), 26-30.
  • Vesely, D. (2004). Architecture in the Age of Divided Representation: The Question of Creativity in the Shadow of Production. Cambridge, MA: MIT Press.
  • Wiltse, H., & Stolterman, E. (2010). Architectures of interaction: An architectural perspective on digital experience. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, 821-824.
  • Zaman, Ç. H. (2011). A hand motion-based tool for conceptual model making in architecture (Doctoral dissertation) İstanbul Technical University. İstanbul.
  • Zboinska, M. A. (2019). Influence of a hybrid digital toolset on the creative behaviors of designers in early-stage design. Journal of Computational Design and Engineering, 6(4), 675-692.
  • Zevi, B. (1957). Architecture as space: How to look at architecture (M. Gendel, Trans.). New York.

Dijital çağda mimarlık öğrencileri için leap motion cihazı ile hibrit tasarım ortamı önerisi

Year 2025, Volume: 8 Issue: 2, 435 - 457, 28.10.2025
https://doi.org/10.37246/grid.1482382

Abstract

Dijital ortamlar, fiziksel gerçekliklerin alternatiflerini tanımlamaktadır. Sanal ve gerçek mekânın birleşimiyle oluşan “sibernetik mekân”, bedensel etkileşimle yeni bir deneyim ortamı oluşturmaktadır. Bu çalışma, beden, fiziksel çevre ve sanal mekânın kesişiminde hibrit tasarım tekniklerini kullanarak yeni temsil biçimleri üretme potansiyelini araştırmaktadır. Ayrıca etkileşimli tasarım ortamlarının, tasarım disiplinleri için mekânsal öğrenmeyi güçlendirmede taşıdığı öneme dikkat çekmektedir. Araştırmanın kapsamı, dijital ortamlarda yaparak öğrenmeyi destekleyen, jest tabanlı etkileşime dayalı hibrit bir mimari tasarım yazılımının geliştirilmesini içermektedir. Uygulamaya dayalı (practice-based) bir araştırma metodolojisi benimsenmiştir. Senaryo tabanlı tasarım değerlendirmesi için araştırmacının kendi kullanım durumlarını içeren öz-yönlendirmeli oturumlar gerçekleştirilmiştir. Bu süreçte el hareketlerini algılayan ve sezgisel bir şekilde üç boyutlu mimari modellerle etkileşim kurulmasını sağlayan Leap Motion cihazı (kızılötesi kameralar ve sensörlerden oluşan bir cihaz) kullanılmıştır. Bulgular, bu tür hibrit sistemlerin mekânsal farkındalığı artırabileceğini ve tasarım eğitiminde bedene dayalı bir tasarım deneyimi geliştirebileceğini ortaya koymaktadır.

References

  • Abdelhameed, W. A. (2013). Virtual reality use in architectural design studios: a case of studying structure and construction. Procedia Computer Science, 25, 220-230.
  • Akın, Ö. (1986). Psychology of architectural design. Pion, London.
  • Anderson, L., Esser, J., & Interrante, V. (2003). A virtual environment for conceptual design in architecture. Proceedings of the workshop on virtual environments, 57-63.
  • Bermudez, J., (1997), Cyber(Inter)Sections: looking into the real ımpact of the virtual in the architectural profession, Proceedings of the symposium on architectural design education: ıntersecting perspectives, ıdentities and approaches. Minneapolis, MN: College of Architecture & Landscape Architecture, 57-63.
  • Billinghurst, M., & Kato, H. (2002). Collaborative augmented reality. Communications of the ACM, 45(7), 64-70.
  • Carpo, M. (2017). The Second Digital Turn: Design Beyond Intelligence. Cambridge, MA: MIT Press.
  • Celani, G., & Vaz, C. E. V. (2021). Teaching digital design and fabrication in architecture: A review of pedagogical models. Design Studies, 74, 101005.
  • Chen, S. C., Hsiao, M. S., & She, H. C. (2015). The effects of static versus dynamic 3D representations on 10th grade students’ atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 53, 169-180.
  • Cobb, S., Neale, H., Crosier, J., & Wilson, J. R. (2002). Development and evaluation of virtual environments for education., Handbook of virtual environments, pp. 951-976.
  • Colomina, B. (1996). Privacy and Publicity: Modern Architecture as Mass Media. Cambridge, MA: MIT Press.
  • Colomina, B. (2019). X-Ray Architecture. Zürich: Lars Müller Publishers.
  • Dong, Y. (2024). Expanding reality and interactive systems: New paths to hybrid design shaping the future of architectural designs. International Journal of Education and Humanities, 17(2), 160–163.
  • Du, J., & Clayton, M. J. (2022). Effects of immersive virtual environments on spatial perception in architectural design education. Automation in Construction, 139, 104278.
  • Dunn, N. (2014). Architectural modelmaking second edition. Hachette UK.
  • Dutton, T. A., & Willenbrock, L. L. (1989). The design studio: an exploration of its traditions and potential. Journal of Architectural Education, 43, 53-55.
  • Dülgeroğlu, Y., & Yılmaz, G. (2022). Investigating the use of Leap Motion controller in architectural design education: Students’ experiences and spatial thinking skills. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-022-09728-w
  • Escobar, I., Acurio, A., Pruna, E., Mena, L., Pilatásig, M., Bucheli, J., ... & Robalino, R. (2018). Fine motor rehabilitation of children using the leap motion device–preliminary usability tests. In Trends and Advances in Information Systems and Technologies, 26, 1030-1039.
  • Falcao, C., Lemos, A. C., & Soares, M. (2015). Evaluation of natural user interface: A usability study based on the Leap Motion device. Procedia Manufacturing, 3, 4359–4364. https://doi.org/10.1016/j.promfg.2015.07.697
  • Gao, W., Jin, S., Zhai, W., Shen, S., Tian, Y., & Zhang, J. (2024). Study on the design of a non-contact interaction system using gestures: Framework and case study. Sustainability, 16(21), 9335. https://doi.org/10.3390/su16219335
  • Gaver, W. W. (1991). Technology affordances. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 79–84. https://doi.org/10.1145/108844.108856
  • Goh, E. S., Sunar, M. S., & Ismail, A. W. (2019). 3D object manipulation techniques in handheld mobile augmented reality interface: A review. IEEE Access, 7, 40581-40601.
  • Gürer, T. K., & Yücel, A. (2010). Bir paradigma olarak mimari temsilin incelenmesi. İtü Dergisi/a, 4(1), 84-96.
  • Hearst, M. A. (2011). 'Natural'search user interfaces. Communications of the ACM, 54(11), 60-67.
  • Ibrahim, R., & Rahimian, F. P. (2010). Comparison of CAD and manual sketching tools for teaching architectural design. Automation in Construction, 19(8), 978-987.
  • Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’97), 234–241. https://doi.org/10.1145/258549.258715
  • Isozaki, A., & Asada, A. (1999). Benzeştirilen köken, benzeştirilen son. Anytime Conference Proceedings, Mimarlar Derneği, Ankara.
  • Jacob, R. J. K. (1994). New human-computer interaction techniques. Human Machine Communication for Educational Systems Design, 129, 131–138.
  • Johnson, H., & Saniie, J. (2023). Distributed gesture controlled systems for human-machine interface. arXiv preprint arXiv:2304.06152. https://doi.org/10.48550/arXiv.2304.06152
  • Kalisperis, L. N., Otto, G., Muramoto, K., Gundrum, J. S., Masters, R., & Orland, B. (2002). Virtual reality/space visualization in design education: the VR-desktop initiative. Proceedings of eCAADe2002, design e-ducation: Connecting the Real and the Virtual, 64-71.
  • Knoll, W., & Hechinger, M. (2008). Architectural models: Construction techniques (2nd ed.). J. Ross Publishing.
  • Kolarevic, B., & Parlac, V. (2021). From Physical to Cyber-Physical: Architecture in the Age of Industry 4.0. Routledge.
  • Korayem, M. H., Madihi, M. A., & Vahidifar, V. (2021). Controlling surgical robot arm using leap motion controller with Kalman filter. Measurement, 178, 109372.
  • Leach, N. (2009). Digital morphogenesis. Architectural Design, 79(1), 32–37. https://doi.org/10.1002/ad.806
  • Linzey, M. (2001). On the secondness of architectural intuition. Journal of Architectural Education, 55(1), 43-50. Lynch, K. (1964). The image of the city. MIT press.
  • Maltzan, M. (2010). The model. Ed Michiel Riedijk, Architecture as a craft: Architecture, drawing, model and position. 197-213.
  • McLuhan, M. (1964). Understanding media: The extensions of man. London: McGraw Hill.
  • Menges, A. (2012). Material computation: Higher integration in morphogenetic design. Architectural Design, 82(2), 14–21. https://doi.org/10.1002/ad.1373
  • Merleau-Ponty, M. (2005). Algılanan dünya (4 b.). (Ö. Aygün, Trans.) İstanbul: Metis Yayıncılık.
  • Milovanovic, J., Gero, J. S., & Nakapan, W. (2021). The impact of immersive virtual reality on design cognition: A study in architectural education. Design Studies, 74, 101005.
  • Mitra, A., & Schwartz, R. (2003). From cyber space to cybernetic space: rethinking the relationship between real and virtual spaces. Journal of Computer Mediated Communication.
  • Nguyen, A. B. V. D., Leusmann, J., Mayer, S., & Vande Moere, A. (2025). Eliciting understandable architectonic gestures for robotic furniture through co-design improvisation. arXiv preprint arXiv:2501.01813. https://doi.org/10.48550/arXiv.2501.01813
  • Norman, F. (2001). Towards a paperless studio. Proceedings of the ARCC Spring Research Meeting Architectural Research Centers Consortium.
  • Novak, M. (1991). Liquid architectures in cyberspace. In Cyberspace: first steps, 225-254.
  • Ohol, A. Goudar, S. Shettigar, S. Anand, S. (2017) Touchless Touch Screen User Interface. International Journal of Technical Research and Applications. 43, 59-63.
  • Oxman, R. (2006). Theory and design in the first digital age. Design studies, 27(3), 229-265.
  • Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: Theory, knowledge, models and medium. Design Studies, 29(2), 99–120.
  • Özgen, D. S., Afacan, Y., & Sürer, E. (2021). Usability of virtual reality for basic design education:a comparative study with paper-based design. International Journal of Technology and Design Education, 31, 357-377.
  • Palumbo, M. L. (2000). New wombs: electronic bodies and architectural disorders. Springer Science & Business Media.
  • Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2020). Augmented reality in education: Current trends and future directions. Educational Technology Research and Development, 68(6), 3045–3069.
  • Picon, A. (2010). Digital Culture in Architecture: An Introduction for the Design Professions. Basel: Birkhäuser.
  • Picon, A. (2021). Architecture and the digital: The environmental turn. In M. Salama, W. Wiedemann & N. Wilkinson (Eds.), The Changing Shape of Architecture: Further Cases of Integrating Research and Design in Practice (pp. 133–146). London: Routledge.
  • Potter, L. E., Araullo, J., & Carter, L. (2013). The leap motion controller: a view on sign language. In Proceedings of the 25th Australian computer-human interaction conference: augmentation, application, innovation, collaboration, 175-178.
  • Reffat, R. M. (2005). Collaborative digital architectural design learning within 3d virtual environments. The 10th international conference on computer aided architectural design research in asia.
  • Reffat, R.K., & Arabia S. (2007). Revitalizing architectural design studio teaching using ICT: Reflections on practical implementations International Journal of Education and Development Using ICT 3(1).
  • Sanders, E. B. (2006). Design research in 2006. Design Research Quarterly, 1(1), 1-8.
  • Sanders, E. B. (2013). Prototyping for design spaces of the future. Ed L. Valentine, In Prototype: Design and Craft in the 21st Century, London: Bloomsbury Academic, 59–73.
  • Schmitt, G. (2001). Introduction, Bits and spaces: architecture and computing for physical, virtual, hybrid realms: 33 projects by Architecture and CAAD, ETH Zurich, Ed. Maia Engeli, Birkhäuser Publishers for Architecture, Basel, Boston, Berlin.
  • Schnabel, M. A. (2004). Architectural design in virtual environments. (Doctoral Dissertation), University of Hongkong.
  • Schnabel, M. A. (2020). The reformation of architectural education through mixed realities. Architectural Design, 90(1), 110–115.
  • Segers, N. M., Achten, H. H., Timmermans, H. J. P., & De Vries, B. (2000). A comparison of computer-aided tools for architectural design. Design and decision support systems in architecture. Proceedings of the 5th International Conference.
  • Smith, A.C. (2004). Architectural model as machine: A new view of models from antiquity to the present day, Elsevier.
  • Soliman, S., Taha, D., & El Sayad, Z. (2019). Architectural education in the digital age: Computer applications: Between academia and practice. Alexandria Engineering Journal, 58(2), 809-818.
  • Soto, D., & Miller, D. (2023). Bridging the gap: Mixed reality tools in early architectural design. Technology|Architecture + Design, 7(2), 145–157.
  • Sun, R., Wu, Y. J., & Cai, Q. (2019). The effect of a virtual reality learning environment on learners’ spatial ability. Virtual Reality, 23(4), 385-398.
  • Taşlıoğlu, M. (2018). Sibernetik Mekân Deneyimleri. (Master’s Thesis), İstanbul Technical University, İstanbul.
  • Tölgyessy, M., Dekan, M., Rodina, J., & Duchoň, F. (2023). Analysis of the leap motion controller workspace for HRI gesture applications. Applied Sciences, 13(2), 742.
  • Treadaway, C. P. (2009). Hand e-craft: an investigation into hand use in digital creative practice. In Proceedings of the seventh ACM conference on Creativity and cognition, (pp. 185-194).
  • Tschumi, B. (2017). Mimarlık ve kopma (1 b.). (A. Tümertekin, Trans.) İstanbul: Janus Yayıncılık
  • Turan, B. O. (2011). 21. Yüzyıl tasarım ortamında süreç, biçim ve temsil ilişkisi. Megaron, 6(3).
  • Varınlıoğlu, G., Halıcı, S., & Alaçam, S. (2015). Computational approaches for basic design education: Pedagogical notes based on an intense student workshop. In XIX congresso da sociedade ibero Americana de Gráfica Digital 2015.
  • Vertegaal, R., & Poupyrev, I. (2008). Organic user interfaces. Communications of the ACM, 51(6), 26-30.
  • Vesely, D. (2004). Architecture in the Age of Divided Representation: The Question of Creativity in the Shadow of Production. Cambridge, MA: MIT Press.
  • Wiltse, H., & Stolterman, E. (2010). Architectures of interaction: An architectural perspective on digital experience. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, 821-824.
  • Zaman, Ç. H. (2011). A hand motion-based tool for conceptual model making in architecture (Doctoral dissertation) İstanbul Technical University. İstanbul.
  • Zboinska, M. A. (2019). Influence of a hybrid digital toolset on the creative behaviors of designers in early-stage design. Journal of Computational Design and Engineering, 6(4), 675-692.
  • Zevi, B. (1957). Architecture as space: How to look at architecture (M. Gendel, Trans.). New York.
There are 76 citations in total.

Details

Primary Language English
Subjects Architectural Design, Architectural Science and Technology
Journal Section Research Articles
Authors

Sevgin Aysu Balkan 0000-0001-8695-3897

Arife Koca 0000-0002-1739-1699

Publication Date October 28, 2025
Submission Date May 11, 2024
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Balkan, S. A., & Koca, A. (2025). Creating a hybrid environment via leap motion device for architecture students in digital age. GRID - Architecture Planning and Design Journal, 8(2), 435-457. https://doi.org/10.37246/grid.1482382