Research Article
BibTex RIS Cite

Makine öğrenmesinin tasarım alanında kullanımı: grafik tabanlı GAN’lardan kütle modeli oluşturma

Year 2025, Volume: 8 Issue: 2, 621 - 639, 28.10.2025
https://doi.org/10.37246/grid.1591809

Abstract

Bu makale, mimari grafik gösterimlerini üç boyutlu (3B) kavramsal kütle modellerine dönüştüren bir makine öğrenimi (ML) sistemi sunmaktadır. Öncelikle 2B kat planı oluşturmaya odaklanan önceki ML yaklaşımlarının aksine, yöntemimiz birden fazla bileşeni tek bir iş akışına entegre eder: (1) HouseGAN++ kullanarak grafik tabanlı girdi, (2) özel MATLAB görüntü işleme metotları ile görüntü tabanlı şekil çıkarma, (3) FloorplanToBlender ile 3B model oluşturma ve (4) görsel geliştirme için difüzyon model tabanlı stil transferi. Bu uçtan uca yaklaşım, otomatik plan-hacim dönüşümü ve üretken görüntü sentezi yoluyla estetik keşfin birleşiminde farklılık göstermektedir. Sonuçlar, geliştirilen sistemin manuel çabayı önemli ölçüde azaltırken verimli, çok aşamalı mimari fikir oluşturmayı sağladığını göstermektedir. Önerilen yöntem, kavram gelişimini hızlandırarak ve soyut mekânsal girdilerden stilistik olarak çeşitli çıktılar sunarak erken aşama tasarım süreçlerine katkıda bulunur.

Ethical Statement

Araştırma etik standartlara uygun olarak yapılmıştır.

Supporting Institution

Bu araştırmanın yürütülmesi ve/veya makalenin hazırlanması için herhangi bir mali destek alınmamıştır

References

  • As, İ., Pal, S., & Basu, P. (2018). Artificial Intelligence in Architecture: Generating Conceptual Design via Deep Learning. International Journal of Architectural Computing, 16(4), 306-327.
  • As, I., Pal, S., & Basu, P. (2019). Composing frankensteins: Data-driven design assemblies through graph-based deep neural networks. In the 107th Annual Meeting BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era. Pittsburgh, PA, USA, ACSA
  • Atalay, M., Çelik, E. (2017). Artificial Intelligence and Machine Learning Applications in Big Data Analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 9 (22) 155-172.
  • Chaillou, S. (2019). AI + Architecture: Towards a New Approach. Harvard University, Graduate School of Design. Boston: Harvard University.
  • Egor, G., Sven, S., Martin, D., & Reinhard, K. (2019). Computer-aided approach to public buildings floor plan generation.Magnetizing Floor Plan Generator. 1st International Conference on Optimization-Driven Architectural Design (pp. 132-139). Amman: Elsevier Procedia.
  • freewayML. (2022). freewayML. Retrieved from freewayML: https://www.freewayml.com/about-us stability.ai. (2021). DreamStudio. Retrieved from DreamStudio: https://dreamstudio.ai
  • Gatsy, L. A., Ecker, A. S., & Bethge, M. (2015, September 2). arxiv. Retrieved from Cornell University: https://arxiv.org/abs/1508.06576
  • Grebtsew. (2021, May 7). FloorplanToBlender3d. Retrieved from Github: https://github.com/grebtsew/FloorplanToBlender3d
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y. (2014, June 10). Generative Adversarial Networks. Retrieved from arxiv: https://arxiv.org/abs/1406.2661
  • Harris, C. G., Stephens, M. J. (1988). A Combined Corner and Edge Detector. Alvey Vision Conference.
  • Karabağlı, K., Koç, M., Basu, P., As, İ. (2021). A Machine Learning Approach to Translate Graph Representations into Conceptual Massing Models. Sigradi 2021: Designing Possibilities, Ubiquitous Conference (pp. 191-202). Colombia: Perkins & Will
  • Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng, C.-Y., & Furukawa, Y. (2021, March 3). House-GAN++: Generative Adversarial Layout Refinement Networks. Retrieved from Cornell University: https://arxiv.org/abs/2103.02574
  • OpenAI. (2021, January 5). DALL·E: Creating Images from Text. Retrieved from OpenAI: https://openai.com/blog/dall-e/
  • OpenCV. (2021, April 2). Image Segmentation with Watershed Algorithm. Retrieved from Open-Source Computer Vision: https://docs.opencv.org/4.5.2/d3/db4/tutorial_py_watershed.html
  • Pirouzaan. (2018, October 10). SYNTACTIC. Retrieved from food4rhino: https://www.food4rhino.com/en/app/syntactic
  • Rombach, R., Blattman, A., Lorenz, D., Esser, P., Ommer, B. (2022). High-Resolution Image Synthesis With Latent Diffusion Models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
  • Senem, M. O., Koç, M., Tunçay, H. E., & As, İ. (2023). Using Deep Learning To Generate Front And Backyards In Landscape Architecture. Architecture and Planning Journal (APJ), 28(3), 1
  • Tamke, M., Nicholas, P., & Zwieryzycki, M. (2018). Machine Learning for architectural design: Practices and infrastructure. International Journal of Architectural Computing.
  • Topuz, B., Alp, N.Ç. (2023). Machine Learning in Architecture. Automation in Construction.
  • Tyagi, D. (2019, March 16). Introduction to Harris Corner Detector. Retrieved from Data Breach: https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
  • Wang, Q. (2022). Machine Learning in Architecture. Lund: Lund University.
  • Wen, T., Tong, B., Liu, Y., Pan, T., Du, Y., Chen, Y., Zhang, S., (2022). Review of research on the instance segmentation of cell images. Computer Methods and Programs in Biomedicine.
  • Zhang, F., Nauata, N., & Furukawa, Y. (2020, March 31). Conv-MPN: Convolutional Message Passing Neural Network for Structured Outdoor Architecture Reconstruction. Cornell University: https://arxiv.org/abs/1912.01756.

A Case Study of a Machine Learning Usage in Design: Conceptual Models from Graph-based GANs

Year 2025, Volume: 8 Issue: 2, 621 - 639, 28.10.2025
https://doi.org/10.37246/grid.1591809

Abstract

This paper presents a novel machine learning (ML) pipeline that transforms architectural graph representations into fully rendered three-dimensional (3D) conceptual massing models. Unlike previous ML approaches that focus primarily on 2D floorplan generation, our method integrates multiple components into a single workflow: (1) graph-based input using HouseGAN++, (2) image-based shape extraction via custom MATLAB processing, (3) 3D model construction with FloorplanToBlender, and (4) diffusion model–based style transfer for visual enhancement. This end-to-end approach is distinctive in its combination of automated plan-to-volume conversion and aesthetic exploration through generative image synthesis. The results show that our pipeline enables efficient, multi-stage architectural ideation while significantly reducing manual effort. The proposed method contributes to early-stage design processes by accelerating concept development and offering stylistically diverse outputs from abstract spatial inputs.

Ethical Statement

All procedures followed were in accordance with the ethical standards.

Supporting Institution

No financial support has been received for conducting the research and/or for the preparation of the article.

References

  • As, İ., Pal, S., & Basu, P. (2018). Artificial Intelligence in Architecture: Generating Conceptual Design via Deep Learning. International Journal of Architectural Computing, 16(4), 306-327.
  • As, I., Pal, S., & Basu, P. (2019). Composing frankensteins: Data-driven design assemblies through graph-based deep neural networks. In the 107th Annual Meeting BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era. Pittsburgh, PA, USA, ACSA
  • Atalay, M., Çelik, E. (2017). Artificial Intelligence and Machine Learning Applications in Big Data Analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 9 (22) 155-172.
  • Chaillou, S. (2019). AI + Architecture: Towards a New Approach. Harvard University, Graduate School of Design. Boston: Harvard University.
  • Egor, G., Sven, S., Martin, D., & Reinhard, K. (2019). Computer-aided approach to public buildings floor plan generation.Magnetizing Floor Plan Generator. 1st International Conference on Optimization-Driven Architectural Design (pp. 132-139). Amman: Elsevier Procedia.
  • freewayML. (2022). freewayML. Retrieved from freewayML: https://www.freewayml.com/about-us stability.ai. (2021). DreamStudio. Retrieved from DreamStudio: https://dreamstudio.ai
  • Gatsy, L. A., Ecker, A. S., & Bethge, M. (2015, September 2). arxiv. Retrieved from Cornell University: https://arxiv.org/abs/1508.06576
  • Grebtsew. (2021, May 7). FloorplanToBlender3d. Retrieved from Github: https://github.com/grebtsew/FloorplanToBlender3d
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y. (2014, June 10). Generative Adversarial Networks. Retrieved from arxiv: https://arxiv.org/abs/1406.2661
  • Harris, C. G., Stephens, M. J. (1988). A Combined Corner and Edge Detector. Alvey Vision Conference.
  • Karabağlı, K., Koç, M., Basu, P., As, İ. (2021). A Machine Learning Approach to Translate Graph Representations into Conceptual Massing Models. Sigradi 2021: Designing Possibilities, Ubiquitous Conference (pp. 191-202). Colombia: Perkins & Will
  • Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng, C.-Y., & Furukawa, Y. (2021, March 3). House-GAN++: Generative Adversarial Layout Refinement Networks. Retrieved from Cornell University: https://arxiv.org/abs/2103.02574
  • OpenAI. (2021, January 5). DALL·E: Creating Images from Text. Retrieved from OpenAI: https://openai.com/blog/dall-e/
  • OpenCV. (2021, April 2). Image Segmentation with Watershed Algorithm. Retrieved from Open-Source Computer Vision: https://docs.opencv.org/4.5.2/d3/db4/tutorial_py_watershed.html
  • Pirouzaan. (2018, October 10). SYNTACTIC. Retrieved from food4rhino: https://www.food4rhino.com/en/app/syntactic
  • Rombach, R., Blattman, A., Lorenz, D., Esser, P., Ommer, B. (2022). High-Resolution Image Synthesis With Latent Diffusion Models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
  • Senem, M. O., Koç, M., Tunçay, H. E., & As, İ. (2023). Using Deep Learning To Generate Front And Backyards In Landscape Architecture. Architecture and Planning Journal (APJ), 28(3), 1
  • Tamke, M., Nicholas, P., & Zwieryzycki, M. (2018). Machine Learning for architectural design: Practices and infrastructure. International Journal of Architectural Computing.
  • Topuz, B., Alp, N.Ç. (2023). Machine Learning in Architecture. Automation in Construction.
  • Tyagi, D. (2019, March 16). Introduction to Harris Corner Detector. Retrieved from Data Breach: https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
  • Wang, Q. (2022). Machine Learning in Architecture. Lund: Lund University.
  • Wen, T., Tong, B., Liu, Y., Pan, T., Du, Y., Chen, Y., Zhang, S., (2022). Review of research on the instance segmentation of cell images. Computer Methods and Programs in Biomedicine.
  • Zhang, F., Nauata, N., & Furukawa, Y. (2020, March 31). Conv-MPN: Convolutional Message Passing Neural Network for Structured Outdoor Architecture Reconstruction. Cornell University: https://arxiv.org/abs/1912.01756.
There are 23 citations in total.

Details

Primary Language English
Subjects Architectural Computing and Visualisation Methods, Architectural Science and Technology, Information Technologies in Architecture and Design
Journal Section Research Articles
Authors

Mustafa Koç 0000-0001-8131-8878

İmdat As 0000-0002-0692-4357

Publication Date October 28, 2025
Submission Date November 26, 2024
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Koç, M., & As, İ. (2025). A Case Study of a Machine Learning Usage in Design: Conceptual Models from Graph-based GANs. GRID - Architecture Planning and Design Journal, 8(2), 621-639. https://doi.org/10.37246/grid.1591809