Derleme
BibTex RIS Kaynak Göster

KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ

Yıl 2020, , 18 - 45, 06.09.2020

Öz

Yeni koronavius hastalığı “COVID-19” dünyada birçok insanın hayatını tehdit eden ciddi bir halk sağlığı sorunu olmuştur. Bu yeni virüsten korunmada veya hastalık şiddetini hafifletmede, SARS-CoV-2 için halen spesifik bir tedavinin olmadığı da dikkate alındığında, bağışıklık sistemin aktif ve güçlü tutulması önemlidir. Beslenme ve bağışıklık arasında oldukça karmaşık ve güçlü ilişki bulunmaktadır. Epidemiyolojik ve deneysel çalışmalar beslenme, bağışıklık sistemi ve enfeksiyon üçgeninde diyet müdahalelerinin önemine işaret etmektedir. Bu süreçte makro ve mikro besin öğesi gereksinimlerini karşılayacak şekilde yeterli alımını sağlayan bir beslenme planına uyulması, diğer zorunlu tedbirler ile birlikte hastalıktan korunmada etkili olacaktır. Ayrıca hastalığın seyrine uygun olarak yapılan beslenme müdahaleleri tedavinin bir parçası olarak, iyileşme ve sağ kalım oranının artmasında potansiyel etki sağlayacaktır. Bu makalede COVİD-19’da beslenmenin bağışıklık sistemin desteklenmesi üzerindeki etkileri ayrıntılı olarak besin ögesi bazında irdelenmiştir.

Kaynakça

  • 1. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020:200490.
  • 2. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal. 2019;16(1):69.
  • 3. Kim J-M, Chung Y-S, Jo HJ, Lee N-J, Kim MS, Woo SH, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health and Research Perspectives. 2020;11(1):3.
  • 4. Adhikari SP, Meng S, Wu Y-J, Mao Y-P, Ye R-X, Wang Q-Z, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious Diseases of Poverty. 2020;9(1):1-12.
  • 5. Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Publications; 2020.
  • 6. Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? International Journal of Molecular Sciences. 2020;21(7):2272.
  • 7. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nature Reviews Immunology. 2010;10(7):514-26.
  • 8. Beghetti I, Biagi E, Martini S, Brigidi P, Corvaglia L, Aceti A. Human Milk’s Hidden Gift: Implications of the Milk Microbiome for Preterm Infants’ Health. Nutrients. 2019;11(12):2944.
  • 9. Smailnejad Ganji K, Mohammadzadeh I, Mohammadnia-Afrouzi M, Ebrahimpour S, Shahbazi M. Factors affecting immune responses to vaccines. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE. 2018;177(5):219-28.
  • 10. Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Frontiers in immunology. 2018;9:1830.
  • 11. MacGillivray DM, Kollmann TR. The role of environmental factors in modulating immune responses in early life. Frontiers in immunology. 2014;5:434.
  • 12. Corman LC. The relationship between nutrition, infection, and immunity. The Medical clinics of North America. 1985;69(3):519-31.
  • 13. Cooper EL, Ma MJ. Understanding nutrition and immunity in disease management. Journal of traditional and complementary medicine. 2017;7(4):386-91.
  • 14. Cunningham-Rundles S. Analytical methods for evaluation of immune response in nutrient intervention. Nutrition reviews. 1998;56(1):S27-S37.
  • 15. Balloux F, van Dorp L. Q&A: What are pathogens, and what have they done to and for us? BMC biology. 2017;15(1):91.
  • 16. Janeway CA, Capra JD, Travers P, Walport M. Immunobiology: the immune system in health and disease. 1999.
  • 17. Nicholson LB. The immune system. Essays in biochemistry. 2016;60(3):275-301.
  • 18. Abbas AK, Lichtman AH, Pillai S. Basic immunology: functions and disorders of the immune system: Elsevier Health Sciences; 2014.
  • 19. Aristizábal B, González Á. Innate immune system. Autoimmunity: From Bench to Bedside [Internet]: El Rosario University Press; 2013.
  • 20. Molnar C, Gair J. 23.2. Adaptive Immune Response. Concepts of Biology-1st Canadian Edition. 2013.
  • 21. Chaplin DD. Overview of the immune response. Journal of Allergy and Clinical Immunology. 2010;125(2):S3-S23.
  • 22. Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology. 2011;7(1):S1.
  • 23. Muñoz-Carrillo JL, Contreras-Cordero JF, Gutiérrez-Coronado O, Villalobos-Gutiérrez PT, Ramos-Gracia LG, Hernández-Reyes VE. Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens. Immune Response Activation and Immunomodulation: IntechOpen; 2018.
  • 24. Piasecka B, Duffy D, Urrutia A, Quach H, Patin E, Posseme C, et al. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proceedings of the National Academy of Sciences. 2018;115(3):E488-E97.
  • 25. Alonso-Alvarez C, Tella JL. Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Canadian Journal of Zoology. 2001;79(1):101-5.
  • 26. Kussmann M. Nutrition and immunity. Mass Spectrometry and Nutrition Research. 2010(9):268.
  • 27. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrients. 2018;10(10):1531.
  • 28. Alam I, Almajwal AM, Alam W, Alam I, Ullah N, Abulmeaaty M, et al. The immune-nutrition interplay in aging–facts and controversies. Nutrition and Healthy Aging. 2019;5(2):73-95.
  • 29. Schaible UE, Stefan H. Malnutrition and infection: complex mechanisms and global impacts. PLoS medicine. 2007;4(5).
  • 30. Farhadi S, Ovchinnikov RS. The relationship between nutrition and infectious diseases: A review. Biomedical and Biotechnology Research Journal (BBRJ). 2018;2(3):168.
  • 31. França T, Ishikawa L, Zorzella-Pezavento S, Chiuso-Minicucci F, da Cunha M, Sartori A. Impact of malnutrition on immunity and infection. Journal of Venomous Animals and Toxins including Tropical Diseases. 2009;15(3):374-90.
  • 32. Salazar N, Valdés-Varela L, González S, Gueimonde M, de los Reyes-Gavilán CG. Nutrition and the gut microbiome in the elderly. Gut Microbes. 2017;8(2):82-97.
  • 33. Mosaddeghi P, Negahdaripour M, Dehghani Z, Farahmandnejad M, Moghadami M, Nezafat N, et al. Therapeutic approaches for COVID-19 based on the dynamics of interferon-mediated immune responses. 2020.
  • 34. Bakanlığı TS. Türkiye Beslenme Rehberi TÜBER 2015. Ankara: TC Sağlık Bakanlığı. 2016.
  • 35. Childs CE, Calder PC, Miles EA. Diet and Immune Function. Multidisciplinary Digital Publishing Institute; 2019.
  • 36. Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, et al. Feeding our immune system: impact on metabolism. Clinical and Developmental Immunology. 2008;2008.
  • 37. Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Comprehensive Physiology. 2011;2(2):863-914. 38. Nirupama R, Rajaraman B, Yajurvedi H. Stress and Glucose metabolism: A Review. Imaging J Clin Medical Sci. 2018;5(1):008-12.
  • 39. Şimşek T, Şimşek HU, Cantürk NZ. Response to trauma and metabolic changes: posttraumatic metabolism. Turkish Journal of Surgery/Ulusal cerrahi dergisi. 2014;30(3):153.
  • 40. Van Dam R, Seidell J. Carbohydrate intake and obesity. European journal of clinical nutrition. 2007;61(S1):S75.
  • 41. Barazzoni R, Deutz N, Biolo G, Bischoff S, Boirie Y, Cederholm T, et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clinical nutrition. 2017;36(2):355-63.
  • 42. Efthimiou J, Mounsey P, Benson D, Madgwick R, Coles S, Benson M. Effect of carbohydrate rich versus fat rich loads on gas exchange and walking performance in patients with chronic obstructive lung disease. Thorax. 1992;47(6):451-6.
  • 43. Nieman DC. Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exercise immunology review. 1998;4:64-76.
  • 44. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-41.
  • 45. Parmaksiz I. Advanced glycation end-products in complications of diabetes mellitus. Marmara Medical Journal. 2011;24(3):141-8.
  • 46. Gkogkolou P, Böhm M. Advanced glycation end products: key players in skin aging? Dermato-endocrinology. 2012;4(3):259-70.
  • 47. Caramelo F, Ferreira N, Oliveiros B. Estimation of risk factors for COVID-19 mortality-preliminary results. medRxiv. 2020.
  • 48. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Protein function. Molecular Biology of the Cell. 4th edition: Garland Science; 2002.
  • 49. Daly JM, Reynolds J, Sigal RK, Shou J, Liberman MD. Effect of dietary protein and amino acids on immune function. Critical care medicine. 1990;18(2 Suppl):S86-93.
  • 50. Li P, Yin Y-L, Li D, Kim SW, Wu G. Amino acids and immune function. British Journal of Nutrition. 2007;98(2):237-52.
  • 51. Ibrahim K, El-Sayed E. Potential role of nutrients on immunity. International Food Research Journal. 2016;23(2).
  • 52. KHALED MB, BENAJIBA N. The role of nutrition in strengthening immune system against newly emerging viral diseases: case of SARS-CoV-2. The North African Journal of Food and Nutrition Research. 2020;04(07):240-4.
  • 53. Champe PC, Harvey RA, Ferrier DR. Biochemistry: Lippincott Williams & Wilkins; 2005.
  • 54. Poos M, Costello R, Carlson-Newberry S. Military Strategies for Sustainment of Nutrition and Immune Function in the Field. National Academies Press, Washington DC; 1999.
  • 55. Galli C, Calder PC. Effects of fat and fatty acid intake on inflammatory and immune responses: a critical review. Annals of nutrition & metabolism. 2009;55(1-3):123.
  • 56. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Annals of Nutrition and Metabolism. 2007;51(4):301-23.
  • 57. D’Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients. 2011;3(1):63-103.
  • 58. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. Journal of clinical medicine. 2018;7(9):258.
  • 59. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clinical microbiology reviews. 2005;18(3):446-64.
  • 60. Semba RD. Vitamin A and immunity to viral, bacterial and protozoan infections. Proceedings of the Nutrition Society. 1999;58(3):719-27.
  • 61. McGill JL, Kelly SM, Guerra-Maupome M, Winkley E, Henningson J, Narasimhan B, et al. Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Scientific reports. 2019;9(1):1-14.
  • 62. Mawson AR. Role of Fat-Soluble Vitamins A and D in the Pathogenesis of Influenza: A New Perspective. ISRN Infectious Diseases. 2012;2013.
  • 63. Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC, Pickworth CL, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. American journal of veterinary research. 2013;74(10):1353-62.
  • 64. KHALED MB, BENAJIBA N. The role of nutrition in strengthening immune system against newly emerging viral diseases: case of SARS-CoV-2.
  • 65. Mora JR, Iwata M, Von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature Reviews Immunology. 2008;8(9):685-98.
  • 66. AKBULUT G. D Vitamini ve İmmün Sistem. Turkiye Klinikleri Nutrition and Dietetics-Special Topics. 2016;2(2):67-71.
  • 67. Unger WW, Laban S, Kleijwegt FS, van der Slik AR, Roep BO. Induction of Treg by monocyte‐derived DC modulated by vitamin D3 or dexamethasone: differential role for PD‐L1. European journal of immunology. 2009;39(11):3147-59.
  • 68. Ferreira GB, Vanherwegen A-S, Eelen G, Gutiérrez ACF, Van Lommel L, Marchal K, et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell reports. 2015;10(5):711-25.
  • 69. Wang Q, He Y, Shen Y, Zhang Q, Chen D, Zuo C, et al. Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4. Journal of Biological Chemistry. 2014;289(17):11681-94.
  • 70. Hawker K. B cells as a target of immune modulation. Annals of Indian Academy of Neurology. 2009;12(4):221.
  • 71. Berardi S, Giardullo L, Corrado A, Cantatore FP. Vitamin D and connective tissue diseases. Inflammation Research. 2020:1-10.
  • 72. ARDENİZ Ö. Vitamin D ve immün sistem. Turkiye Klinikleri Journal of Medical Sciences. 2008;28(2):198-205.
  • 73. Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabryšová L, et al. The role of 1α, 25‐dihydroxyvitamin D 3 and cytokines in the promotion of distinct F oxp3+ and IL‐10+ CD 4+ T cells. European journal of immunology. 2012;42(10):2697-708.
  • 74. Zhang N, Bevan MJ. CD8+ T cells: foot soldiers of the immune system. Immunity. 2011;35(2):161-8.
  • 75. Lysandropoulos AP, Jaquiéry E, Jilek S, Pantaleo G, Schluep M, Du Pasquier RA. Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. Journal of neuroimmunology. 2011;233(1-2):240-4.
  • 76. Brown R SA. Vitamin D deficiency: a factor in COVID-19, progression, severity and mortality? – An urgent call for research. MitoFit Preprint Arch. 2020. doi:10.26124/mitofit:200001
  • 77. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988.
  • 78. McCartney D, Byrne D. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19.
  • 79. Petre CristianIlie SS, Lee Smith. The role of Vitamin D in the prevention of Coronavirus Disease 2019 infection and mortality. 2020. doi:10.21203/rs.3.rs-21211/v1
  • 80. Altıner A, Atalay H, Bilal T. Bir antioksidan olarak E vitamini. Balıkesir Sağlık Bilimleri Dergisi. 2017;6(3):149-57.
  • 81. Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunological reviews. 2005;205(1):269-84.
  • 82. Kalinski P. Regulation of immune responses by prostaglandin E2. The Journal of Immunology. 2012;188(1):21-8.
  • 83. Wu D, Meydani SN. Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Brain, Behavior, and Immunity. 2004;18(6):487-94.
  • 84. Brandenberger C, Kling KM, Vital M, Mühlfeld C. The role of pulmonary and systemic immunosenescence in acute lung injury. Aging and disease. 2018;9(4):553.
  • 85. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine. 2020.
  • 86. ERGÜN C. Antioksidan Vitaminler ve Bağışıklık Sistemi. Turkiye Klinikleri Nutrition and Dietetics-Special Topics. 2016;2(2):56-61.
  • 87. Mileva M, Galabov AS. Vitamin E and Influenza Virus Infection. Vitamin E in Health and Disease. 2018:67.
  • 88. Agler AH, Kurth T, Gaziano JM, Buring JE, Cassano PA. Randomised vitamin E supplementation and risk of chronic lung disease in the Women's Health Study. Thorax. 2011;66(4):320-5.
  • 89. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Annals of surgery. 2002;236(6):814.
  • 90. Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53(5):821-35.
  • 91. Kunisawa J. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody. Cellular and Molecular Life Sciences. 2017;74(8):1503-9.
  • 92. Spinas E, Saggini A, Kritas S, Cerulli G, Caraffa A, Antinolfi P, et al. Crosstalk between vitamin B and immunity. J Biol Regul Homeost Agents. 2015;29(2):283-8.
  • 93. Riyapa D, Rinchai D, Muangsombut V, Wuttinontananchai C, Toufiq M, Chaussabel D, et al. Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PloS one. 2019;14(8).
  • 94. de Andrade JAA, Gayer CRM, de Almeida Nogueira NP, Paes MC, Bastos VLFC, Neto JdCB, et al. The effect of thiamine deficiency on inflammation, oxidative stress and cellular migration in an experimental model of sepsis. Journal of Inflammation. 2014;11(1):11.
  • 95. Abrams B, Duncan D, Hertz-Picciotto I. A prospective study of dietary intake and acquired immune deficiency syndrome in HIV-seropositive homosexual men. Journal of acquired immune deficiency syndromes. 1993;6(8):949-58.
  • 96. Szuts P, Katona Z, Ilyes M, Szabo I, Csato M. Correction of defective chemotaxis with thiamine in Shwachman-Diamond syndrome. The Lancet. 1984;323(8385):1072-3.
  • 97. Marik PE. Patterns of death in patients with sepsis and the use of hydrocortisone, ascorbic acid, and thiamine to prevent these deaths. Surgical infections. 2018;19(8):812-20.
  • 98. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. Biosynthesis of vitamin B2 (riboflavin). Annual review of nutrition. 2000;20(1):153-67.
  • 99. Suwannasom N, Kao I, Pruß A, Georgieva R, Bäumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. International Journal of Molecular Sciences. 2020;21(3):950.
  • 100. Schramm M, Wiegmann K, Schramm S, Gluschko A, Herb M, Utermöhlen O, et al. Riboflavin (vitamin B2) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes. European journal of immunology. 2014;44(3):728-41. 101. Verdrengh M, Tarkowski A. Riboflavin in innate and acquired immune responses. Inflammation Research. 2005;54(9):390-3.
  • 102. Chen L, Feng L, Jiang W-D, Jiang J, Wu P, Zhao J, et al. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella). Fish & shellfish immunology. 2015;45(2):307-20.
  • 103. Mazur-Bialy AI, Buchala B, Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity–a study on the RAW 264.7 cell line. British journal of nutrition. 2013;110(3):509-14.
  • 104. Canto C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell metabolism. 2015;22(1):31-53.
  • 105. Sauve AA. NAD+ and vitamin B3: from metabolism to therapies. Journal of Pharmacology and Experimental Therapeutics. 2008;324(3):883-93.
  • 106. Lebouché B, Jenabian M-A, Singer J, Graziani GM, Engler K, Trottier B, et al. The role of extended-release niacin on immune activation and neurocognition in HIV-infected patients treated with antiretroviral therapy–CTN PT006: study protocol for a randomized controlled trial. Trials. 2014;15(1):390.
  • 107. Sinthupoom N, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. European Food Research and Technology. 2015;240(1):1-17.
  • 108. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-39.
  • 109. Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009;14(9):3446-85.
  • 110. Digby JE, Martinez F, Jefferson A, Ruparelia N, Chai J, Wamil M, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(3):669-76.
  • 111. Pinheiro NM, Santana FP, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, et al. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal. 2017;31(1):320-32.
  • 112. Jones HD, Yoo J, Crother TR, Kyme P, Ben-Shlomo A, Khalafi R, et al. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration. PloS one. 2015;10(4).
  • 113. Brown JK, Haft JW, Bartlett RH, Hirschl RB, editors. Acute lung injury and acute respiratory distress syndrome: extracorporeal life support and liquid ventilation for severe acute respiratory distress syndrome in adults. Seminars in respiratory and critical care medicine; 2006: Copyright© 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New.
  • 114. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Nature Publishing Group; 2020.
  • 115. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature Reviews Cancer. 2013;13(8):572-83.
  • 116. Liew S-C. Folic acid and diseases-supplement it or not? Revista da Associação Médica Brasileira. 2016;62(1):90-100.
  • 117. Mansouri R, Moogooei M, Moogooei M, Razavi N, Mansourabadi AH. The role of vitamin D3 and vitamin B9 (Folic acid) in immune system. International Journal of Epidemiologic Research. 2016;3(1):69-85.
  • 118. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):236.
  • 119. Mikkelsen K, Apostolopoulos V. Vitamin B12, Folic Acid, and the Immune System. Nutrition and Immunity: Springer; 2019. p. 103-14.
  • 120. Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. The Journal of nutrition. 2006;136(1):189-94.
  • 121. Saeed F, Nadeem M, Ahmed RS, Tahir Nadeem M, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds–a review. Food and Agricultural Immunology. 2016;27(2):205-29.
  • 122. Cianciulli A, Salvatore R, Porro C, Trotta T, Panaro MA. Folic acid is able to polarize the inflammatory response in LPS activated microglia by regulating multiple signaling pathways. Mediators of inflammation. 2016;2016.
  • 123. Mahmood L. The metabolic processes of folic acid and Vitamin B12 deficiency. Journal of Health Research and Reviews. 2014;1(1):5. 124. Cruse JM, Lewis RE. Atlas of immunology: Springer Science & Business Media; 2013.
  • 125. Forse RA. Diet Nutrition and Immunity: 0: CRC Press; 2017.
  • 126. Erkurt MA, Aydogdu I, Dikilitaş M, Kuku I, Kaya E, Bayraktar N, et al. Effects of cyanocobalamin on immunity in patients with pernicious anemia. Medical Principles and Practice. 2008;17(2):131-5.
  • 127. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12‐deficient patients by methyl‐B12 treatment. Clinical & Experimental Immunology. 1999;116(1):28-32.
  • 128. Narayanan N, Nair DT. Vitamin B12 May Inhibit RNA-Dependent-RNA Polymerase Activity of nsp12 from the COVID-19 Virus. 2020.
  • 129. Devaki SJ, Raveendran RL. Vitamin C: sources, functions, sensing and analysis. Vitamin C: IntechOpen; 2017.
  • 130. Figueroa-Méndez R, Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Frontiers in physiology. 2015;6:397.
  • 131. Jacob RA, Sotoudeh G. Vitamin C function and status in chronic disease. Nutrition in clinical care. 2002;5(2):66-74.
  • 132. Tüber T. Türkiye Beslenme Rehberi. Ankara; 2015.
  • 133. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211.
  • 134. Pawlowska E, Szczepanska J, Blasiak J. Pro-and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. Oxidative Medicine and Cellular Longevity. 2019;2019.
  • 135. Hemilä H. Vitamin C and infections. Nutrients. 2017;9(4):339.
  • 136. Vincent J-L, Taccone FS. Understanding pathways to death in patients with COVID-19. The Lancet Respiratory Medicine. 2020.
  • 137. Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute respiratory distress syndrome from COVID-19. The Lancet Respiratory Medicine. 2020.
  • 138. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Pública. 2020;44.
  • 139. Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. Journal of Intensive Care. 2020;8(1):15.
  • 140. Erol A. High-dose intravenous vitamin C treatment for COVID-19. 2020.
  • 141. Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama. 2019;322(13):1261-70.
  • 142. von Hohenheim TP. Nutritional Treatment of Coronavirus-Covid 19-CoV 2-Orthomolecular Medicine: IVC 3 x 30.000 mg Ascorbate per Day: BoD–Books on Demand; 2020.
  • 143. Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Critical Care. 2020;24(1):1-2.
  • 144. Sarfraz I, Rasul A, Hussain G, Adem Se, Ali M. Natural Immune Boosters as First-Line Armours to Combat Viral Infection-COVID19: Myth or Science? 2020.
  • 145. Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017;9(11):1483-500.
  • 146. Ward RJ, Crichton RR, Taylor DL, Della Corte L, Srai SK, Dexter DT. Iron and the immune system. Journal of neural transmission. 2011;118(3):315-28.
  • 147. Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of iron metabolism in response to infection: twists for all tastes. Pharmaceuticals. 2018;11(3):84.
  • 148. Kumar V, Choudhry V. Iron deficiency and infection. The Indian Journal of Pediatrics. 2010;77(7):789-93.
  • 149. Ahluwalia N, Sun J, Krause D, Mastro A, Handte G. Immune function is impaired in iron-deficient, homebound, older women. The American journal of clinical nutrition. 2004;79(3):516-21.
  • 150. Walker EM, Walker SM. Effects of iron overload on the immune system. Annals of Clinical & Laboratory Science. 2000;30(4):354-65.
  • 151. Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. The Lancet Gastroenterology & Hepatology. 2020.
  • 152. Osredkar J, Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S. 2011;3(2161):0495.
  • 153. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. The American journal of clinical nutrition. 1998;68(2):447S-63S.
  • 154. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmunity reviews. 2015;14(4):277-85.
  • 155. Ibs K-H, Rink L. Zinc-altered immune function. The Journal of nutrition. 2003;133(5):1452S-6S.
  • 156. Rink L. Zinc and the immune system. Proceedings of the Nutrition Society. 2000;59(4):541-52.
  • 157. Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Annals of Nutrition and Metabolism. 2006;50(2):85-94.
  • 158. Haase H, Rink L. The immune system and the impact of zinc during aging. Immunity & Ageing. 2009;6(1):9.
  • 159. Dardenne M. Zinc and immune function. European journal of clinical nutrition. 2002;56(3):S20-S3.
  • 160. Djoko KY, Cheryl-lynn YO, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. Journal of Biological Chemistry. 2015;290(31):18954-61.
  • 161. Acevedo-Murillo JA, Garcia-Leon ML, Firo-Reyes V, Santiago Cordova JL, Gonzalez-Rodriguez AP, Wong-Chew RM. Zinc supplementation promotes a Th1 response and improves clinical symptoms in less hours in children with pneumonia younger than 5 years old. A randomized controlled clinical trial. Frontiers in Pediatrics. 2019;7:431.
  • 162. Razzaque M. COVID-19 Pandemic: Can Maintaining Optimal Zinc Balance Enhance Host Resistance? 2020.
  • 163. Haider Z, Subhani MM, Farooq MA, Ishaq M, Khalid M, Khan RSA, et al. In Silico discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 using pharmacophore and molecular docking based virtual screening from ZINC database. Preprints; 2020.
  • 164. Prabhu KS, & Lei, X. G. . Selenium. Advances in nutrition (Bethesda, Md.). 2016 7(2):415–7. doi:https://doi.org/10.3945/an.115.010785
  • 165. Avery JC, Hoffmann PR. Selenium, selenoproteins, and immunity. Nutrients. 2018;10(9):1203.
  • 166. Yang R, Liu Y, Zhou Z. Selenium and selenoproteins, from structure, function to food resource and nutrition. Food Science and Technology Research. 2017;23(3):363-73.
  • 167. Tinggi U. Selenium: its role as antioxidant in human health. Environmental health and preventive medicine. 2008;13(2):102.
  • 168. Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. The Journal of nutrition. 2003;133(5):1457S-9S.
  • 169. Coşkun T. İmmünonütrisyondan farmakonütrisyona. Çocuk Sağlığı ve Hastalıkları Dergisi. 2011;54:164-81.
  • 170. Terpiłowska S, Siwicki AK. Review paper The role of selected microelements: selenium, zinc, chromium and iron in immune system. Central European Journal of Immunology. 2011;36(4):303-7.
  • 171. Chisenga C, Kelly P. The Role of Selenium in Human Immunity. Medical Journal of Zambia. 2014;41(4):181-5.
  • 172. Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biological trace element research. 2001;81(3):189-213.
  • 173. Gill H, Walker G. Selenium, immune function and resistance to viral infections. Nutrition & dietetics. 2008;65:S41-S7.
  • 174. Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Molecular nutrition & food research. 2008;52(11):1273-80.
  • 175. Ivory K, Prieto E, Spinks C, Armah CN, Goldson AJ, Dainty JR, et al. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clinical nutrition. 2017;36(2):407-15.
  • 176. Ahmed SS. The Coronavirus Disease 2019 (COVID-19): A Review. Journal of Advances in Medicine and Medical Research. 2020:1-9.
  • 177. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences. 2020.
  • 178. DAĞ A. Klinik Beslenmede İmmünobeslenme. Turkiye Klinikleri Nutrition and Dietetics-Special Topics. 2016;2(2):101-5.
  • 179. Petric D. Immune system and COVID-19. doi:DOI: 10.13140/RG.2.2.21811.99366
Toplam 176 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Nilüfer Acar Tek

Tevfik Koçak

Yayımlanma Tarihi 6 Eylül 2020
Gönderilme Tarihi 21 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Acar Tek, N., & Koçak, T. (2020). KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ. Gazi Sağlık Bilimleri Dergisi18-45.
AMA Acar Tek N, Koçak T. KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ. Gazi Sağlık Bil. Published online 01 Eylül 2020:18-45.
Chicago Acar Tek, Nilüfer, ve Tevfik Koçak. “KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ”. Gazi Sağlık Bilimleri Dergisi, Eylül (Eylül 2020), 18-45.
EndNote Acar Tek N, Koçak T (01 Eylül 2020) KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ. Gazi Sağlık Bilimleri Dergisi 18–45.
IEEE N. Acar Tek ve T. Koçak, “KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ”, Gazi Sağlık Bil, ss. 18–45, Eylül 2020.
ISNAD Acar Tek, Nilüfer - Koçak, Tevfik. “KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ”. Gazi Sağlık Bilimleri Dergisi. Eylül 2020. 18-45.
JAMA Acar Tek N, Koçak T. KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ. Gazi Sağlık Bil. 2020;:18–45.
MLA Acar Tek, Nilüfer ve Tevfik Koçak. “KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ”. Gazi Sağlık Bilimleri Dergisi, 2020, ss. 18-45.
Vancouver Acar Tek N, Koçak T. KORONAVİRÜSLE (COVİD-19) MÜCADELEDE BESLENMENİN BAĞIŞIKLIK SİSTEMİNİN DESTEKLENMESİNDE ROLÜ. Gazi Sağlık Bil. 2020:18-45.