Review
BibTex RIS Cite

PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ

Year 2021, Volume: 6 Issue: 3, 135 - 142, 24.12.2021
https://doi.org/10.52881/gsbdergi.929238

Abstract

Yaşamsal faaliyetlerin sürdürülmesi açısından önemli olan folat, hücre bölünmesi ve DNA sentezinde görevli olan temel bir mikrobesin ögesidir. Yetersiz folat alımı megaloblastik anemi, nöral tüp defektleri, kardiyovasküler hastalıklar, büyüme geriliği, alzheimer gibi bazı nörolojik hastalıklar ve bazı kanser türlerinin oluşumuna sebep olmaktadır. Folat yetersizliği, nöral tüp kusurlarına neden olması açısından tüm dünyada önemli bir halk sağlığı sorunu olarak görülmektedir. Bu yüzden bir çok ülkede, folik asit takviyesi veya gıdaların folik asit ile zenginleştirilmesi yoluyla nöral tüp defektlerinin önüne geçilmeye çalışılmaktadır. Folatın kimyasal formu; folik asit olarak isimlendirilmiştir ve gıda takviyelerinde bu sentetik olan formu kullanılmaktadır. Folik asitin bu sentetik şekliyle yüksek dozlarda tüketilmesinin nöronal gelişim üzerinde olumsuz etkilerinin gösterildiği deneysel çalışmalar bulunmaktadır. Bu nedenle folik asit takviyesinin güvenliği konusunda çelişkili yaklaşımlar mevcuttur. Son yıllarda bazı probiyotik bakterilerin fermentasyonu aracılığı ile gıdaların folat açısından zenginleştirilmesi üzerinde çalışmalar yapılmaktadır. Bu şekilde besinlerin zenginleştirilmesi, sentetik folik asit kullanımına karşı doğal bir alternatif olabilir.

References

  • 1. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev. 1997; (6)1:43-45.
  • 2. Sanderson P, McNulty H, Mastroiacovo P, McDowell I.FW, Melse-Boonstra A, Finglas PM, et al. Folate bioavailability:UK food standards agency workshop report. Br J Nutr. 2003; 90(2):473–479.
  • 3. Kok DE, Steegenga WT, McKay JA. Folate and epigenetics: why we should not forget bacterial biosynthesis. Epigenomics. 2018; 10(9):1147-1150.
  • 4. Hanson AD, Gregory JF. Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol. 2011; 62:105-25.
  • 5. Victor Herbert MD. Recommended dietary intakes (RDI) of folate in humans1-3, Am J Clin Nutr. 1987; 45(4):661-70.
  • 6. T.C. Sağlık Bakanlığı, Türkiye Halk sağlığı Kurumu. Türkiye Beslenme Rehberi TÜBER Yayın No:1031, Ankara 2016. Erişim:https://okulsagligi.meb.gov.tr/meb_iys_dosyalar/2017_01/27102535_TYrkiye_Beslenme_Rehberi.pdf. (06.05.21 )
  • 7. Rossi M, Amaretti A, Raimondi S. Folate Production by Probiotic Bacteria. Nutrition. 2011; 3(1):118-134.
  • 8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57(1):1-24.
  • 9. Asrar FM, O'Connor DL. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem. 2005; 16(10):587–593.
  • 10. D'Aimmoa M R, Modest M , Mattarelli P, Biavat B, Andlid T. Biosynthesis and cellular content of folate in bifidobacteria across hostspecies with different diets. Anaerobe. 2014; 30:169-177.
  • 11. LeBlanc JG, Laino JE, Juarez del Valle M, Vannini V, Van Sinderen D,Taranto MP, et al. B-Group vitamin production by lactic acid bacteria – current knowledge and potential applications. J Appl Microbiol. 2011; 111(6):1297-309.
  • 12. Leroy F, De Vuyst L, Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004; 15:67-68.
  • 13. LeBlanc JG, Savoy de Giori G, Smid EJ, Hugenholtz J, Sesma F. Folate production by lactic acid bacteria and other food-grade microorganisms. J Appl Microbiol. 2007; 329-339.
  • 14. Laiño JE, Valle MJ, Savoy de Giori, LeBlanc JG. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int J Food Microbiol. 2014; 191:10-16.
  • 15. Khalili M, Rad AH, Khosroushahi AY, Khosravi H, Jafarzadeh S. Application of Probiotics in Folate Bio-Fortification of Yoghurt. Probiotics Antimicrob Proteins. 2020; 12(2):756-763.
  • 16. Özden A. Probiyotik “Sağlıklı Yaşam İçin Yararlı Dost Bakteriler”. Güncel Gastroenteroloji. 2013; 17(1):22-38. 17. Laiño JE, Levit R, de Moreno de LeBlanc A, Savoy de Giory G, LeBlanc JG. Characterization of folate production and probiotic potential of Streptococcus gallolyticus subsp. macedonicus CRL415. Food Microbiol. 2019; 79:20-26.
  • 18. Meucci A, Rossetti L, Zago M, Monti L, Giraffa G, Carminati D, et al. Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol. 2018; 69:116-122.
  • 19. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol. 2003; 69(8), 4542–4548.
  • 20. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzi D, Rossi M. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl Environ Microbiol. 2007;73(1):179-85.
  • 21. Wu Z, Wu J, Cao P, Jin Y, Pan D, Zeng X, et al. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J Dairy Sci. 2017;100(6): 4223-4229.
  • 22. Turroni CF, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011; 149(1):37-44.
  • 23. D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J Appl Microbiol. 2012; 112(5): 975–984.
  • 24. Burr NE, Hull MA, Subramanian V. Folic Acid Supplementation May Reduce Colorectal Cancer Risk in Patients With Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Clin Gastroenterol. 2017; 51(3):247-253.
  • 25. Baszczuk A, Thielemann A, Musialik K, Kopczynski J, Bielawska L, Dzumak A, et al. The Impact of Supplementation with Folic Acid on Homocysteine Concentration and Selected Lipoprotein Parameters in Patients with Primary Hypertension. J Nutr Sci Vitaminol (Tokyo). 2017; 63(2):96-103.
  • 26. Concentration and Selected Lipoprotein Parameters in Patients with Primary Hypertension. J Nutr Sci Vitaminol (Tokyo). 2017; 63(2):96-103.
  • 27. Dehkordi EH, Sedehi M, Shahraki ZG, Najafi R. Effect of folic acid on homocysteine and insulin resistance of overweight and obese children and adolescents. Adv Biomed Res. 2016;5:88.
  • 28. Wiens D, DeSoto MC. Is High Folic Acid Intake a Risk Factor for Autism? Brain Sci. 2017; 7(11):149. 29. Silva C, Keating E, Pintod E. The impact of folic acid supplementation on gestational and long term health: Critical temporal windows, benefits and risks. Porto Biomed J. 2017; 2(6):315–332.
  • 30. DeSoto MC, Hitlan R. Synthetic folic acid supplementation during pregnancy may increase the risk of developing autism. J Pediatr Biochem. 2012; 2:251–261. 31. Raghavan R, Fallin MD, Wang X. Maternal plasma folate, vitamin B12 levels and multivitamin supplementation during pregnancy and risk of Autism Spectrum Disorder in the Boston Birth Cohort. FASEB J. 2016; 30:151–156.
  • 32. Valera-Gran D, Navarete-Munoz EM, Garcia de la Hera M, Fernandez-Somoano A, Tardon A, Ibarluzea J, et al. Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 years of age: The prospective birth cohort Infancia Medio Ambiente (INMA) study. Am J Clin Nutr. 2017; 106(3):878–887.
  • 33. Harlan De Crescenzo A, Panoutsopoulos AA, Tat L, Schaaf Z, Racherla S, Henderson L, et al. Deficient or Excess Folic Acid Supply During Pregnancy Alter Cortical Neurodevelopment in Mouse Offspring. Cereb Cortex. 2021; 31(1):635-649.
  • 34. Scott JM. Folate and vitamin B 12. Proc Nutr Soc. 1999; 58(2):441–448.
  • 35. LeBlanc JG, Milani C, Savoy de Giori G, Sesma F, van Sinderan D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013; 24(2):160-168.
  • 36. Gangadharan D, Nampoothiri KM. Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. Food Science and Technology. 2011; 44(9):1859-1864.
  • 37. Mohammad MA, Molloy A, Scott J, Husseın L. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int J Food Sci Nutr. 2006; 57(7/8):470-480.
  • 38. Laiño JE, Zelaya H, Juárez del Valle M, Savoy de Giori G, LeBlanc JG. Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. J Funct Foods. 2015; 17:22-32.

PROBIOTICS' NATURAL FOLATE SOURCE POTENTIAL: CURRENT OVERVIEW

Year 2021, Volume: 6 Issue: 3, 135 - 142, 24.12.2021
https://doi.org/10.52881/gsbdergi.929238

Abstract

Folate is a basic micronutrient that is responsible for cell division and DNA synthesis and essential for maintaining vital activities. Insufficient folat intake causes megaloblastic anemia, neural tube defect, cardiovascular diseases, growth reterdation, some neurological diseases such as alzheimer's and some types of cancer. Folate deficiency is considered as an important public health problem around the world due to its role in the development of neural tube defects. Therefore, in many countries, neural tube defects are tried to be prevented by folic acid supplements or enriching foods with folic acid. The chemical form of folate is known as folic acid, and it is used in food supplements. Experimental studies have shown that consuming folic acid in high doses with this synthetic form has a negative effect on neuronal development. As a result, there are conflicting views on the safety of folic acid supplementation. In recent years, research has been conducted on the folate fortification of foods via fermentation of some probiotic bacteria. Nutrient fortification in this way can be a natural alternative to the use of synthetic folic acid.

References

  • 1. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev. 1997; (6)1:43-45.
  • 2. Sanderson P, McNulty H, Mastroiacovo P, McDowell I.FW, Melse-Boonstra A, Finglas PM, et al. Folate bioavailability:UK food standards agency workshop report. Br J Nutr. 2003; 90(2):473–479.
  • 3. Kok DE, Steegenga WT, McKay JA. Folate and epigenetics: why we should not forget bacterial biosynthesis. Epigenomics. 2018; 10(9):1147-1150.
  • 4. Hanson AD, Gregory JF. Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol. 2011; 62:105-25.
  • 5. Victor Herbert MD. Recommended dietary intakes (RDI) of folate in humans1-3, Am J Clin Nutr. 1987; 45(4):661-70.
  • 6. T.C. Sağlık Bakanlığı, Türkiye Halk sağlığı Kurumu. Türkiye Beslenme Rehberi TÜBER Yayın No:1031, Ankara 2016. Erişim:https://okulsagligi.meb.gov.tr/meb_iys_dosyalar/2017_01/27102535_TYrkiye_Beslenme_Rehberi.pdf. (06.05.21 )
  • 7. Rossi M, Amaretti A, Raimondi S. Folate Production by Probiotic Bacteria. Nutrition. 2011; 3(1):118-134.
  • 8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57(1):1-24.
  • 9. Asrar FM, O'Connor DL. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem. 2005; 16(10):587–593.
  • 10. D'Aimmoa M R, Modest M , Mattarelli P, Biavat B, Andlid T. Biosynthesis and cellular content of folate in bifidobacteria across hostspecies with different diets. Anaerobe. 2014; 30:169-177.
  • 11. LeBlanc JG, Laino JE, Juarez del Valle M, Vannini V, Van Sinderen D,Taranto MP, et al. B-Group vitamin production by lactic acid bacteria – current knowledge and potential applications. J Appl Microbiol. 2011; 111(6):1297-309.
  • 12. Leroy F, De Vuyst L, Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004; 15:67-68.
  • 13. LeBlanc JG, Savoy de Giori G, Smid EJ, Hugenholtz J, Sesma F. Folate production by lactic acid bacteria and other food-grade microorganisms. J Appl Microbiol. 2007; 329-339.
  • 14. Laiño JE, Valle MJ, Savoy de Giori, LeBlanc JG. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int J Food Microbiol. 2014; 191:10-16.
  • 15. Khalili M, Rad AH, Khosroushahi AY, Khosravi H, Jafarzadeh S. Application of Probiotics in Folate Bio-Fortification of Yoghurt. Probiotics Antimicrob Proteins. 2020; 12(2):756-763.
  • 16. Özden A. Probiyotik “Sağlıklı Yaşam İçin Yararlı Dost Bakteriler”. Güncel Gastroenteroloji. 2013; 17(1):22-38. 17. Laiño JE, Levit R, de Moreno de LeBlanc A, Savoy de Giory G, LeBlanc JG. Characterization of folate production and probiotic potential of Streptococcus gallolyticus subsp. macedonicus CRL415. Food Microbiol. 2019; 79:20-26.
  • 18. Meucci A, Rossetti L, Zago M, Monti L, Giraffa G, Carminati D, et al. Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol. 2018; 69:116-122.
  • 19. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol. 2003; 69(8), 4542–4548.
  • 20. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzi D, Rossi M. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl Environ Microbiol. 2007;73(1):179-85.
  • 21. Wu Z, Wu J, Cao P, Jin Y, Pan D, Zeng X, et al. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J Dairy Sci. 2017;100(6): 4223-4229.
  • 22. Turroni CF, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011; 149(1):37-44.
  • 23. D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J Appl Microbiol. 2012; 112(5): 975–984.
  • 24. Burr NE, Hull MA, Subramanian V. Folic Acid Supplementation May Reduce Colorectal Cancer Risk in Patients With Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Clin Gastroenterol. 2017; 51(3):247-253.
  • 25. Baszczuk A, Thielemann A, Musialik K, Kopczynski J, Bielawska L, Dzumak A, et al. The Impact of Supplementation with Folic Acid on Homocysteine Concentration and Selected Lipoprotein Parameters in Patients with Primary Hypertension. J Nutr Sci Vitaminol (Tokyo). 2017; 63(2):96-103.
  • 26. Concentration and Selected Lipoprotein Parameters in Patients with Primary Hypertension. J Nutr Sci Vitaminol (Tokyo). 2017; 63(2):96-103.
  • 27. Dehkordi EH, Sedehi M, Shahraki ZG, Najafi R. Effect of folic acid on homocysteine and insulin resistance of overweight and obese children and adolescents. Adv Biomed Res. 2016;5:88.
  • 28. Wiens D, DeSoto MC. Is High Folic Acid Intake a Risk Factor for Autism? Brain Sci. 2017; 7(11):149. 29. Silva C, Keating E, Pintod E. The impact of folic acid supplementation on gestational and long term health: Critical temporal windows, benefits and risks. Porto Biomed J. 2017; 2(6):315–332.
  • 30. DeSoto MC, Hitlan R. Synthetic folic acid supplementation during pregnancy may increase the risk of developing autism. J Pediatr Biochem. 2012; 2:251–261. 31. Raghavan R, Fallin MD, Wang X. Maternal plasma folate, vitamin B12 levels and multivitamin supplementation during pregnancy and risk of Autism Spectrum Disorder in the Boston Birth Cohort. FASEB J. 2016; 30:151–156.
  • 32. Valera-Gran D, Navarete-Munoz EM, Garcia de la Hera M, Fernandez-Somoano A, Tardon A, Ibarluzea J, et al. Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 years of age: The prospective birth cohort Infancia Medio Ambiente (INMA) study. Am J Clin Nutr. 2017; 106(3):878–887.
  • 33. Harlan De Crescenzo A, Panoutsopoulos AA, Tat L, Schaaf Z, Racherla S, Henderson L, et al. Deficient or Excess Folic Acid Supply During Pregnancy Alter Cortical Neurodevelopment in Mouse Offspring. Cereb Cortex. 2021; 31(1):635-649.
  • 34. Scott JM. Folate and vitamin B 12. Proc Nutr Soc. 1999; 58(2):441–448.
  • 35. LeBlanc JG, Milani C, Savoy de Giori G, Sesma F, van Sinderan D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013; 24(2):160-168.
  • 36. Gangadharan D, Nampoothiri KM. Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. Food Science and Technology. 2011; 44(9):1859-1864.
  • 37. Mohammad MA, Molloy A, Scott J, Husseın L. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int J Food Sci Nutr. 2006; 57(7/8):470-480.
  • 38. Laiño JE, Zelaya H, Juárez del Valle M, Savoy de Giori G, LeBlanc JG. Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. J Funct Foods. 2015; 17:22-32.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Makaleler
Authors

Ayşe Ayda Demirtaş 0000-0002-5969-7549

Sevgi Kayahan 0000-0002-9670-228X

Makbule Gezmen Karadağ 0000-0003-3202-3250

Publication Date December 24, 2021
Submission Date April 30, 2021
Acceptance Date June 15, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Demirtaş, A. A., Kayahan, S., & Gezmen Karadağ, M. (2021). PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ. Gazi Sağlık Bilimleri Dergisi, 6(3), 135-142. https://doi.org/10.52881/gsbdergi.929238
AMA Demirtaş AA, Kayahan S, Gezmen Karadağ M. PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ. Gazi sağlık bilim. derg. December 2021;6(3):135-142. doi:10.52881/gsbdergi.929238
Chicago Demirtaş, Ayşe Ayda, Sevgi Kayahan, and Makbule Gezmen Karadağ. “PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ”. Gazi Sağlık Bilimleri Dergisi 6, no. 3 (December 2021): 135-42. https://doi.org/10.52881/gsbdergi.929238.
EndNote Demirtaş AA, Kayahan S, Gezmen Karadağ M (December 1, 2021) PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ. Gazi Sağlık Bilimleri Dergisi 6 3 135–142.
IEEE A. A. Demirtaş, S. Kayahan, and M. Gezmen Karadağ, “PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ”, Gazi sağlık bilim. derg, vol. 6, no. 3, pp. 135–142, 2021, doi: 10.52881/gsbdergi.929238.
ISNAD Demirtaş, Ayşe Ayda et al. “PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ”. Gazi Sağlık Bilimleri Dergisi 6/3 (December 2021), 135-142. https://doi.org/10.52881/gsbdergi.929238.
JAMA Demirtaş AA, Kayahan S, Gezmen Karadağ M. PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ. Gazi sağlık bilim. derg. 2021;6:135–142.
MLA Demirtaş, Ayşe Ayda et al. “PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ”. Gazi Sağlık Bilimleri Dergisi, vol. 6, no. 3, 2021, pp. 135-42, doi:10.52881/gsbdergi.929238.
Vancouver Demirtaş AA, Kayahan S, Gezmen Karadağ M. PROBİYOTİKLERİN DOĞAL FOLAT KAYNAĞI POTANSİYELİ: GÜNCEL BAKIŞ. Gazi sağlık bilim. derg. 2021;6(3):135-42.