Review
BibTex RIS Cite

Phenolic Compounds Mediated Modulation of Chronic Disease Pathogenesis-Related Micro RNAs

Year 2024, Volume: 9 Issue: 2, 109 - 123, 30.08.2024
https://doi.org/10.52881/gsbdergi.1484502

Abstract

Phenolic compounds are plant-derived bioactive compounds that stand out with their antioxidant activity. It is reported that these compounds have many health benefits such as anti-inflammatory, anti-carcinogenic, antimicrobial and protective effects against obesity, cardiovascular diseases and various types of cancer. Recent studies have shown that micro RNA (miRNA) modulation plays an important role in the protective effects of phenolic compounds, especially resveratrol, curcumin and green tea catechins against chronic diseases. Among these phenolic compounds, resveratrol has been found to be effective in increasing the expression of miRNAs (miR-375, miR-126, miR-132, miR-130b, miR-221, miR181b, miR-542, miR-150) that play a role in the regulation of insulin secretion, suppression of inflammatory pathways and prevention of cancer cell proliferation. Studies on curcumin are generally in vitro in design and reveal the effects of curcumin analogs on increasing the expression of tumor suppressor miRNAs (Let-7, miR-26a, miR-101, miR-146a, miR-200, miR-28, miR-139, miR-149) and suppressing the expression of oncogenic miRNAs (miR-21, miR-155) in different types of cancer cells. Green tea catechins influence the expression of miRNAs involved in lipogenesis, adipogenesis, carcinogenesis and inflammation (miR-335, miR-34a, miR-16 down-regulation; miR-194, let-7a, miR-145, miR-210 up-regulation). All these results reveal the protective effects of resveratrol, curcumin and green tea catechins against various chronic diseases such as obesity, cardiovascular diseases and cancer through their roles in miRNA modulation.

References

  • 1. Iyer M, Pal K, Upadhye V. Chapter 17 - Phytochemicals and cancer. In: Pati S, Sarkar T, Lahiri DBT-RF of P, editors. Elsevier; 2023. p. 295–308.
  • 2. Zhang Y-JJ, Gan R-YY, Li S, Zhou Y, Li A-NN, Xu D-PP, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015;20(12):21138–56.
  • 3. Vasantha Rupasinghe HP, Nair SVG, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. In: Studies in Natural Products Chemistry. 1st ed. Elsevier B.V.; 2014. p. 229–66.
  • 4. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules. 2021;27(1):233.
  • 5. Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023;28(2):1–41.
  • 6. Noce A, Romani A, Bernini R. Dietary Intake and Chronic Disease Prevention. Nutrients. 2021;13(4):1358.
  • 7. Vitale M, Vaccaro O, Masulli M, Bonora E, Del Prato S, Giorda CB, et al. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin Nutr. 2017;36(6):1686–92.
  • 8. Williamson G, Holst B. Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99(S3):S55–8.
  • 9. Rajendran P, Abdelsalam SA, Renu K, Veeraraghavan V, Ben Ammar R, Ahmed EA. Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci. 2022; Vol. 23,.
  • 10. Borsoi FT, Neri-Numa IA, de Oliveira WQ, de Araújo FF, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem Mol Sci. 2023;6:100155.
  • 11. García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of MicroRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31.
  • 12. Fatima S, Khan DA, Fatima F, Aamir M, Ijaz A, Hafeez A. Role of δ-tocotrienol and resveratrol supplementation in the regulation of micro RNAs in patients with metabolic syndrome: A randomized controlled trial. Complement Ther Med. 2023;74(March):102950.
  • 13. Effat H, El Houseini ME, Abohashem RS. The Combined Impact of Curcumin: Piperine and Sorafenib on microRNAs and Different Pathways in Breast Cancer Cells. Indian J Clin Biochem. 2024; https://doi.org/10.1007/s12291-024-01212-0
  • 14. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics. 2014;15(S11):S3.
  • 15. Bernardo BC, Charchar FJ, Lin RCY, McMullen JR. A MicroRNA Guide for Clinicians and Basic Scientists: Background and Experimental Techniques. Hear Lung Circ. 2012;21(3):131–42.
  • 16. Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, et al. Micro-RNA: The darkhorse of cancer. Cell Signal. 2021;83(January):109995.
  • 17. Vishnoi A, Rani S. miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol Biol. 2023;2595:1–12.
  • 18. Görür A, Tamer L. MikroRNA’ların Terapötik Kullanımı. Mersin Univ Saglık Bilim Derg. 2011;4(2):1-7
  • 19. Ardekani AM, Naeini MM. The role of microRNAs in human diseases. Avicenna J Med Biotechnol. 2010;2(4):161–79.
  • 20. Tan BWQ, Sim WL, Cheong JK, Kuan W Sen, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res. 2020;160:105045.
  • 21. Quintanilha B, Reis B, Duarte G, Cozzolino S, Rogero M. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients. 2017;9(11):1168.
  • 22. Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts. 2022;15(2):105–17.
  • 23. Ge Q, Brichard S, Yi X, Li Q. microRNAs as a New Mechanism Regulating Adipose Tissue Inflammation in Obesity and as a Novel Therapeutic Strategy in the Metabolic Syndrome. J Immunol Res. 2014;2014:1–10.
  • 24. Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother. 2018;103:851–7.
  • 25. Orallo F. Comparative Studies of the Antioxidant Effects of Cis- and Trans- Resveratrol. Curr Med Chem. 2006;13(1):87–98.
  • 26. Salehi B, Mishra A, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines. 2018;6(3):91.
  • 27. Mahjabeen W, Khan DA, Mirza SA. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial. Complement Ther Med. 2022;66 (June 2020):102819.
  • 28. Teimouri M, Homayouni-Tabrizi M, Rajabian A, Amiri H, Hosseini H. Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2022;70:102863.
  • 29. Surina, Fontanella RA, Scisciola L, Marfella R, Paolisso G, Barbieri M. miR-21 in Human Cardiomyopathies. Front Cardiovasc Med. 2021;8. 767064
  • 30. Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet. 2017;62(2):141–50.
  • 31. Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia. 2017;60(2):354–63.
  • 32. Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A, et al. Identification of Circulating miR-101, miR-375 and miR-802 as Biomarkers for Type 2 Diabetes. Metabolism. 2015;64(4):489–97.
  • 33. Li X, Li D, Wang A, Chu T, Lohcharoenkal W, Zheng X, et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds. J Invest Dermatol. 2017;137(12):2630–8.
  • 34. Fatima S, Khan DA, Aamir M, Pervez MA, Fatima F. δ-Tocotrienol in Combination with Resveratrol Improves the Cardiometabolic Risk Factors and Biomarkers in Patients with Metabolic Syndrome: A Randomized Controlled Trial. Metab Syndr Relat Disord. 2023 Feb;21(1):25–34.
  • 35. Martínez-Maqueda D, Zapatera B, Gallego-Narbón A, Vaquero MP, Saura-Calixto F, Pérez-Jiménez J. A 6-week supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food Funct. 2018;9(11):6010–9.
  • 36. Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F. Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev. 2013;26(2):118–29.
  • 37. Ramos‐Romero S, Léniz A, Martínez‐Maqueda D, Amézqueta S, Fernández‐Quintela A, Hereu M, et al. Inter‐Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Mol Nutr Food Res. 2021;65(2):1–8.
  • 38. Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM, Gigante I, et al. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways. Mol Nutr Food Res. 2021 Nov 21;65(21):1–10.
  • 39. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J, Gonzálvez M, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82.
  • 40. Dhar S, Hicks C, Levenson AS. Resveratrol and prostate cancer: Promising role for microRNAs. Mol Nutr Food Res. 2011;55(8):1219–29.
  • 41. Venkatadri R, Muni T, Iyer AK V, Yakisich JS, Azad N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 2016;7(2):e2104–e2104.
  • 42. Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. Ind Crops Prod. 2021;172:114050.
  • 43. Hewlings S, Kalman D. Curcumin: A Review of Its Effects on Human Health. Foods. 2017;6(10):92.
  • 44. Indira Priyadarsini K. Chemical and Structural Features Influencing the Biological Activity of Curcumin. Curr Pharm Des. 2013;19(11):2093–100.
  • 45. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021;Volume 15:4503–25.
  • 46. Ahmadi M, Hajialilo M, Dolati S, Eghbal‐Fard S, Heydarlou H, Ghaebi M, et al. The effects of nanocurcumin on Treg cell responses and treatment of ankylosing spondylitis patients: A randomized, double‐blind, placebo‐controlled clinical trial. J Cell Biochem. 2020;121(1):103–10.
  • 47. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: Problems and Promises. Mol Pharm. 2007;4(6):807–18.
  • 48. Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, et al. Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression. Cancer Res. 2012;72(1):335–45.
  • 49. Liu C, Tong Z, Tan J, Xin Z, Wang Z, Tian L. MicroRNA‑21‑5p targeting PDCD4 suppresses apoptosis via regulating the PI3K/AKT/FOXO1 signaling pathway in tongue squamous cell carcinoma. Exp Ther Med. 2019; 18(5): 3543–3551.
  • 50. Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, et al. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget. 2015;6(26):21918–33.
  • 51. Qiang Z, Meng L, Yi C, Yu L, Chen W, Sha W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J Int Med Res. 2019;47(3):1288–97.
  • 52. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 2011;31(3):185–97.
  • 53. Wang N, Feng T, Liu X, Liu Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm. 2020;70(3):399–409.
  • 54. Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Taghipour A, Jafari MR, Nikpoor AR, et al. Curcumin as an effective suppressor of miRNA expression in patients with knee osteoarthritis. Avicenna J Phytomedicine. 2022;12(4):346–56.
  • 55. Abuelezz NZ, E Shabana M, Rashed L, NB Morcos G. Nanocurcumin Modulates miR-223-3p and NF-κB Levels in the Pancreas of Rat Model of Polycystic Ovary Syndrome to Attenuate Autophagy Flare, Insulin Resistance and Improve ß Cell Mass. J Exp Pharmacol. 2021;Volume 13:873–88.
  • 56. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: A literature review. Chin Med. 2010;5(1):13.
  • 57. Cabrera C, Artacho R, Giménez R. Beneficial Effects of Green Tea—A Review. J Am Coll Nutr. 2006 Apr;25(2):79–99.
  • 58. Vrânceanu M, Hegheş S-C, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, et al. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. Plants. 2023;12(12):2273.
  • 59. Reygaert WC. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed Res Int. 2018 Jul;2018:1–9.
  • 60. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81(7):519–33.
  • 61. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–7.
  • 62. Choi J-Y, Kim Y, Ryu R, Cho S-J, Kwon E-Y, Choi M-S. Effect of Green Tea Extract on Systemic Metabolic Homeostasis in Diet-Induced Obese Mice Determined via RNA-Seq Transcriptome Profiles. Nutrients. 2016;8(10):640.
  • 63. Otton R, Bolin AP, Ferreira LT, Marinovic MP, Rocha ALS, Mori MA. Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. J Nutr Biochem. 2018;57:170–9.
  • 64. Torres LF, Cogliati B, Otton R. Green Tea Prevents NAFLD by Modulation of miR-34a and miR-194 Expression in a High-Fat Diet Mouse Model. Oxid Med Cell Longev. 2019;2019:1–18.
  • 65. Chen W, Yang M, Tsuei Y, Su T, Siao A, Kuo Y, et al. Green Tea Epigallocatechin Gallate Inhibits Preadipocyte Growth via the microRNA‐let‐7a/HMGA2 Signaling Pathway. Mol Nutr Food Res. 2023;67(9).
  • 66. Quintanilha BJ, Pinto Ferreira LR, Ferreira FM, Neto EC, Sampaio GR, Rogero MM. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clin Nutr. 2020;39(2):554–62.
  • 67. Wei L, Zhao D. M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression. Ann Transl Med. 2022;10(24):1376–1376.
  • 68. Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother. 2018;103:851–7.
  • 69. Bastos RVS, Dorna MS, Chiuso-Minicucci F, Felix TF, Fernandes AAH, Azevedo PS, et al. Acute green tea intake attenuates circulating microRNA expression induced by a high-fat, high-saturated meal in obese women: A randomized crossover study. J Nutr Biochem. 2023;112:109203.
  • 70. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics. 2014;15(S11):S3.
  • 71. Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis. 2011;32(12):1881–9.
  • 72. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21(2):140–6.

Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu

Year 2024, Volume: 9 Issue: 2, 109 - 123, 30.08.2024
https://doi.org/10.52881/gsbdergi.1484502

Abstract

Fenolik bileşikler, antioksidan aktivitesiyle öne çıkan bitkisel kaynaklı biyoaktif bileşiklerdir. Bu bileşiklerin metabolizmada antiinflamatuvar, antikanserojen, antimikrobiyal pek çok sağlık yararı olduğu ve obezite, kardiyovasküler hastalıklar, çeşitli kanser türlerine karşı koruyucu etki gösterdiği belirtilmektedir. Son yıllarda yapılan araştırmalar fenolik bileşiklerin, özellikle de reveratrol, kurkumin ve yeşil çay kateşinlerinin kronik hastalıklara karşı koruyucu etkilerinde mikro RNA (miRNA) modülasyonunun da önemli rolü olduğunu göstermiştir. Bu fenolik bileşiklerden resveratrolün özellikle insülin sekresyonunun düzenlenmesi, inflamatuvar süreçlerin baskılanması, kanser hücrelerinin proliferasyonunun önlenmesinde rol oynayan miRNA’ların (miR-375, miR-126, miR-132, miR-130b, miR-221, miR181b, miR-542, miR-150) ekspresyonlarının artmasında etkili olduğu tespit edilmiştir. Kurkuminle ilgili araştırmalar genellikle in vitro tasarımdadır ve kurkumin analoglarının çeşitli kanser hücrelerindeki tümör baskılayıcı miRNA’ların (Let-7, miR-26a, miR-101, miR-146a, miR-200, miR-28, miR-139, miR-149) ekspresyonunu artıcı ve onkojenik miRNA’ların (miR-21, miR-155) ekspresyonlarını baskılayıcı etkilerini ortaya koymaktadır. Yeşil çay kateşinlerinin ise (özellikle EGCG) lipogenez, adipogenez, karsinojenez ve inflamasyonla ilişkilil miRNA’ların ekspresyonunu (miR-335, miR-34a, miR-16 aşağı regülasyonu; miR-194, let-7a, miR-145, miR-210 yukarı regülasyonu) etkilediği görülmüştür. Tüm bu sonuçlarresveratrol, kurkumin ve yeşil çay kateşinlerinin miRNA modülasyonundaki rolleri aracılığıyla obezite, kardiyovasküler hastalıklar ve kanser gibi çeşitli kronik hastalıklara karşı koruyucu etkilerini ortaya koymaktadır.

References

  • 1. Iyer M, Pal K, Upadhye V. Chapter 17 - Phytochemicals and cancer. In: Pati S, Sarkar T, Lahiri DBT-RF of P, editors. Elsevier; 2023. p. 295–308.
  • 2. Zhang Y-JJ, Gan R-YY, Li S, Zhou Y, Li A-NN, Xu D-PP, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015;20(12):21138–56.
  • 3. Vasantha Rupasinghe HP, Nair SVG, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. In: Studies in Natural Products Chemistry. 1st ed. Elsevier B.V.; 2014. p. 229–66.
  • 4. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules. 2021;27(1):233.
  • 5. Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023;28(2):1–41.
  • 6. Noce A, Romani A, Bernini R. Dietary Intake and Chronic Disease Prevention. Nutrients. 2021;13(4):1358.
  • 7. Vitale M, Vaccaro O, Masulli M, Bonora E, Del Prato S, Giorda CB, et al. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin Nutr. 2017;36(6):1686–92.
  • 8. Williamson G, Holst B. Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99(S3):S55–8.
  • 9. Rajendran P, Abdelsalam SA, Renu K, Veeraraghavan V, Ben Ammar R, Ahmed EA. Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci. 2022; Vol. 23,.
  • 10. Borsoi FT, Neri-Numa IA, de Oliveira WQ, de Araújo FF, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem Mol Sci. 2023;6:100155.
  • 11. García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of MicroRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31.
  • 12. Fatima S, Khan DA, Fatima F, Aamir M, Ijaz A, Hafeez A. Role of δ-tocotrienol and resveratrol supplementation in the regulation of micro RNAs in patients with metabolic syndrome: A randomized controlled trial. Complement Ther Med. 2023;74(March):102950.
  • 13. Effat H, El Houseini ME, Abohashem RS. The Combined Impact of Curcumin: Piperine and Sorafenib on microRNAs and Different Pathways in Breast Cancer Cells. Indian J Clin Biochem. 2024; https://doi.org/10.1007/s12291-024-01212-0
  • 14. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics. 2014;15(S11):S3.
  • 15. Bernardo BC, Charchar FJ, Lin RCY, McMullen JR. A MicroRNA Guide for Clinicians and Basic Scientists: Background and Experimental Techniques. Hear Lung Circ. 2012;21(3):131–42.
  • 16. Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, et al. Micro-RNA: The darkhorse of cancer. Cell Signal. 2021;83(January):109995.
  • 17. Vishnoi A, Rani S. miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol Biol. 2023;2595:1–12.
  • 18. Görür A, Tamer L. MikroRNA’ların Terapötik Kullanımı. Mersin Univ Saglık Bilim Derg. 2011;4(2):1-7
  • 19. Ardekani AM, Naeini MM. The role of microRNAs in human diseases. Avicenna J Med Biotechnol. 2010;2(4):161–79.
  • 20. Tan BWQ, Sim WL, Cheong JK, Kuan W Sen, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res. 2020;160:105045.
  • 21. Quintanilha B, Reis B, Duarte G, Cozzolino S, Rogero M. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients. 2017;9(11):1168.
  • 22. Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts. 2022;15(2):105–17.
  • 23. Ge Q, Brichard S, Yi X, Li Q. microRNAs as a New Mechanism Regulating Adipose Tissue Inflammation in Obesity and as a Novel Therapeutic Strategy in the Metabolic Syndrome. J Immunol Res. 2014;2014:1–10.
  • 24. Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother. 2018;103:851–7.
  • 25. Orallo F. Comparative Studies of the Antioxidant Effects of Cis- and Trans- Resveratrol. Curr Med Chem. 2006;13(1):87–98.
  • 26. Salehi B, Mishra A, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines. 2018;6(3):91.
  • 27. Mahjabeen W, Khan DA, Mirza SA. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial. Complement Ther Med. 2022;66 (June 2020):102819.
  • 28. Teimouri M, Homayouni-Tabrizi M, Rajabian A, Amiri H, Hosseini H. Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2022;70:102863.
  • 29. Surina, Fontanella RA, Scisciola L, Marfella R, Paolisso G, Barbieri M. miR-21 in Human Cardiomyopathies. Front Cardiovasc Med. 2021;8. 767064
  • 30. Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet. 2017;62(2):141–50.
  • 31. Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia. 2017;60(2):354–63.
  • 32. Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A, et al. Identification of Circulating miR-101, miR-375 and miR-802 as Biomarkers for Type 2 Diabetes. Metabolism. 2015;64(4):489–97.
  • 33. Li X, Li D, Wang A, Chu T, Lohcharoenkal W, Zheng X, et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds. J Invest Dermatol. 2017;137(12):2630–8.
  • 34. Fatima S, Khan DA, Aamir M, Pervez MA, Fatima F. δ-Tocotrienol in Combination with Resveratrol Improves the Cardiometabolic Risk Factors and Biomarkers in Patients with Metabolic Syndrome: A Randomized Controlled Trial. Metab Syndr Relat Disord. 2023 Feb;21(1):25–34.
  • 35. Martínez-Maqueda D, Zapatera B, Gallego-Narbón A, Vaquero MP, Saura-Calixto F, Pérez-Jiménez J. A 6-week supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food Funct. 2018;9(11):6010–9.
  • 36. Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F. Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev. 2013;26(2):118–29.
  • 37. Ramos‐Romero S, Léniz A, Martínez‐Maqueda D, Amézqueta S, Fernández‐Quintela A, Hereu M, et al. Inter‐Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Mol Nutr Food Res. 2021;65(2):1–8.
  • 38. Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM, Gigante I, et al. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways. Mol Nutr Food Res. 2021 Nov 21;65(21):1–10.
  • 39. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J, Gonzálvez M, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82.
  • 40. Dhar S, Hicks C, Levenson AS. Resveratrol and prostate cancer: Promising role for microRNAs. Mol Nutr Food Res. 2011;55(8):1219–29.
  • 41. Venkatadri R, Muni T, Iyer AK V, Yakisich JS, Azad N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 2016;7(2):e2104–e2104.
  • 42. Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. Ind Crops Prod. 2021;172:114050.
  • 43. Hewlings S, Kalman D. Curcumin: A Review of Its Effects on Human Health. Foods. 2017;6(10):92.
  • 44. Indira Priyadarsini K. Chemical and Structural Features Influencing the Biological Activity of Curcumin. Curr Pharm Des. 2013;19(11):2093–100.
  • 45. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021;Volume 15:4503–25.
  • 46. Ahmadi M, Hajialilo M, Dolati S, Eghbal‐Fard S, Heydarlou H, Ghaebi M, et al. The effects of nanocurcumin on Treg cell responses and treatment of ankylosing spondylitis patients: A randomized, double‐blind, placebo‐controlled clinical trial. J Cell Biochem. 2020;121(1):103–10.
  • 47. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: Problems and Promises. Mol Pharm. 2007;4(6):807–18.
  • 48. Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, et al. Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression. Cancer Res. 2012;72(1):335–45.
  • 49. Liu C, Tong Z, Tan J, Xin Z, Wang Z, Tian L. MicroRNA‑21‑5p targeting PDCD4 suppresses apoptosis via regulating the PI3K/AKT/FOXO1 signaling pathway in tongue squamous cell carcinoma. Exp Ther Med. 2019; 18(5): 3543–3551.
  • 50. Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, et al. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget. 2015;6(26):21918–33.
  • 51. Qiang Z, Meng L, Yi C, Yu L, Chen W, Sha W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J Int Med Res. 2019;47(3):1288–97.
  • 52. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 2011;31(3):185–97.
  • 53. Wang N, Feng T, Liu X, Liu Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm. 2020;70(3):399–409.
  • 54. Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Taghipour A, Jafari MR, Nikpoor AR, et al. Curcumin as an effective suppressor of miRNA expression in patients with knee osteoarthritis. Avicenna J Phytomedicine. 2022;12(4):346–56.
  • 55. Abuelezz NZ, E Shabana M, Rashed L, NB Morcos G. Nanocurcumin Modulates miR-223-3p and NF-κB Levels in the Pancreas of Rat Model of Polycystic Ovary Syndrome to Attenuate Autophagy Flare, Insulin Resistance and Improve ß Cell Mass. J Exp Pharmacol. 2021;Volume 13:873–88.
  • 56. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: A literature review. Chin Med. 2010;5(1):13.
  • 57. Cabrera C, Artacho R, Giménez R. Beneficial Effects of Green Tea—A Review. J Am Coll Nutr. 2006 Apr;25(2):79–99.
  • 58. Vrânceanu M, Hegheş S-C, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, et al. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. Plants. 2023;12(12):2273.
  • 59. Reygaert WC. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed Res Int. 2018 Jul;2018:1–9.
  • 60. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81(7):519–33.
  • 61. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–7.
  • 62. Choi J-Y, Kim Y, Ryu R, Cho S-J, Kwon E-Y, Choi M-S. Effect of Green Tea Extract on Systemic Metabolic Homeostasis in Diet-Induced Obese Mice Determined via RNA-Seq Transcriptome Profiles. Nutrients. 2016;8(10):640.
  • 63. Otton R, Bolin AP, Ferreira LT, Marinovic MP, Rocha ALS, Mori MA. Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. J Nutr Biochem. 2018;57:170–9.
  • 64. Torres LF, Cogliati B, Otton R. Green Tea Prevents NAFLD by Modulation of miR-34a and miR-194 Expression in a High-Fat Diet Mouse Model. Oxid Med Cell Longev. 2019;2019:1–18.
  • 65. Chen W, Yang M, Tsuei Y, Su T, Siao A, Kuo Y, et al. Green Tea Epigallocatechin Gallate Inhibits Preadipocyte Growth via the microRNA‐let‐7a/HMGA2 Signaling Pathway. Mol Nutr Food Res. 2023;67(9).
  • 66. Quintanilha BJ, Pinto Ferreira LR, Ferreira FM, Neto EC, Sampaio GR, Rogero MM. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clin Nutr. 2020;39(2):554–62.
  • 67. Wei L, Zhao D. M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression. Ann Transl Med. 2022;10(24):1376–1376.
  • 68. Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother. 2018;103:851–7.
  • 69. Bastos RVS, Dorna MS, Chiuso-Minicucci F, Felix TF, Fernandes AAH, Azevedo PS, et al. Acute green tea intake attenuates circulating microRNA expression induced by a high-fat, high-saturated meal in obese women: A randomized crossover study. J Nutr Biochem. 2023;112:109203.
  • 70. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics. 2014;15(S11):S3.
  • 71. Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis. 2011;32(12):1881–9.
  • 72. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21(2):140–6.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Nutritional Science, Nutrigenomics and Personalised Nutrition
Journal Section Makaleler
Authors

Teslime Özge Şahin 0000-0002-7289-5187

Yasemin Akdevelioğlu 0000-0002-2213-4419

Publication Date August 30, 2024
Submission Date May 15, 2024
Acceptance Date May 31, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Şahin, T. Ö., & Akdevelioğlu, Y. (2024). Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu. Gazi Sağlık Bilimleri Dergisi, 9(2), 109-123. https://doi.org/10.52881/gsbdergi.1484502
AMA Şahin TÖ, Akdevelioğlu Y. Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu. Gazi sağlık bilim. derg. August 2024;9(2):109-123. doi:10.52881/gsbdergi.1484502
Chicago Şahin, Teslime Özge, and Yasemin Akdevelioğlu. “Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu”. Gazi Sağlık Bilimleri Dergisi 9, no. 2 (August 2024): 109-23. https://doi.org/10.52881/gsbdergi.1484502.
EndNote Şahin TÖ, Akdevelioğlu Y (August 1, 2024) Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu. Gazi Sağlık Bilimleri Dergisi 9 2 109–123.
IEEE T. Ö. Şahin and Y. Akdevelioğlu, “Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu”, Gazi sağlık bilim. derg, vol. 9, no. 2, pp. 109–123, 2024, doi: 10.52881/gsbdergi.1484502.
ISNAD Şahin, Teslime Özge - Akdevelioğlu, Yasemin. “Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu”. Gazi Sağlık Bilimleri Dergisi 9/2 (August 2024), 109-123. https://doi.org/10.52881/gsbdergi.1484502.
JAMA Şahin TÖ, Akdevelioğlu Y. Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu. Gazi sağlık bilim. derg. 2024;9:109–123.
MLA Şahin, Teslime Özge and Yasemin Akdevelioğlu. “Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu”. Gazi Sağlık Bilimleri Dergisi, vol. 9, no. 2, 2024, pp. 109-23, doi:10.52881/gsbdergi.1484502.
Vancouver Şahin TÖ, Akdevelioğlu Y. Kronik Hastalık Patogeneziyle İlişkili Mikro RNA’ların Fenolik Bileşikler Aracılığıyla Modülasyonu. Gazi sağlık bilim. derg. 2024;9(2):109-23.