Research Article
BibTex RIS Cite

Ar-Ge Merkezinde Proje Seçim Problemi için Bulanık Entegre Yaklaşım

Year 2025, Volume: 3 Issue: 2, 46 - 56, 16.11.2025

Abstract

Şirketlerin doğru kararlar verebilmesi işlemlerini karlı bir şekilde sürdürmelerini sağlar. Bu kapsamda, bu çalışmanın amacı; bir Ar-Ge merkezinde yatırım projelerinin seçimini ve çoklu, birbiriyle çelişen kriterlerin dikkate alındığı karar verme süreçlerini desteklemek üzere entegre bir yaklaşım geliştirmektir. Önerilen metot üç aşamadan oluşmaktadır. İlk aşamada, proje değerlendirme kriterleri tanımlanır ve Tam Tutarlılık Yöntemi (FUCOM) kullanılmıştır. Bu metotun kullanılmasındaki amaç, karşılaştırma sayısı az ve tutarlı bir yöntem sunmasıdır. Uzmanların kriterleri değerlendirirken dilsel değişkenlere de yer vermesi sebebiyle kriter ağırlıkları “Bulanık Tam Tutarlılık Yöntemi” ile de değerlendirilmiştir. Çalışma sonunda “Tam Tutarlılık Yöntemi” ve “Bulanık Tam Tutarlılık Yöntemi” sonuçları karşılaştırılmıştır. İkinci aşamada “Multi Atributive Ideal-Real Comparative Analysis” yöntemi kullanılarak alternatiflerin seçim sıralaması oluşturulmuştur. Bu metot literatürde çok alternatifi olan problemlerde kullanılmıştır. Bu çalışmada 17 alternatif değerlendirilmiştir. Üçüncü aşamada proje seçimi yapılmıştır. Çeşitli kısıtlar altında optimum proje seçilmiştir.
Sonuç olarak, dört tane ana kriter ve bu kriterlerin alt kriterleri oluşturularak toplamda dokuz tane kriter göz önünde bulundurulmuştur. Dört ana kriter şunlardır: ekonomik, kurumsal, teknolojik ve stratejik. Ayrıca FUCOM ve Bulanık FUCOM metotları arasında kriterlerin ağırlıklandırılması açısından farklılıklar bulunmuştur, ancak ana kriterlerin sıralaması değişmemiştir. Son olarak çeşitli kısıtlar altında yatırım alternatifleri sıralanmıştır. Çalışma sonucunda elde edilen bulgular tüm Ar-Ge merkezleri için rekabet avantajını elde etmek, değişken çevre koşullarında hızlı bir şekilde pozisyon alabilmek ve karmaşık karar verme süreçlerini geliştirmek için bir kılavuz olabilir.
Not: Bu çalışmanın öncül bir versiyonu “International Graduate Research Symposium – IGRS’24” adlı sempozyumda sunulmuştur.

References

  • Amiri, M. P. (2010, February 21). Project selection for oil-fields development by using the AHP and Fuzzy Topsis Methods. ELSEVIER. https://www.sciencedirect.com/science/article/pii/S0957417410001429
  • Berberler, M. E. (2009). Knapsack type problems and applications. Ulusal Tez Merkezi Anasayfa. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=VmPREawttxu E056IU7Jw2A&no=ZlbIfWhj3X iBSDUk1FpGYg
  • Dağıstanlı, H. A. (2024). An Interval-Valued Intuitionistic Fuzzy VIKOR Approach for R&D Project Selection in Defense Industry Investment Decisions. https://jscda-journal.org/index.php/jscda/article/view/28/23
  • Demir, G., & Bircan, H. (2020). Comparison of BMW and FUCOM Methods of Criteria Weighting Methods and an Application. ResearchGate.
  • Dua, T. V., Duc, D. V., Bao, N. C., & Trung, D. D. (2024). Integration of Objective Weighting Methods for Criteria and MCDM methods: Application in Material Selection. EUREKA: Physics and Engineering, (2), 131–148. https://doi.org/10.21303/2461-4262.2024.003171
  • Garrido, A. (2018). A Brief History of Fuzzy Logic. Academia.edu. https://www.academia.edu/35782229/A_Brief_History_of_Fuzzy_ Logic
  • Hacısüleyman, V. (2019). Optimization of Reservoir Operation by Using Fuzzy Logic and Dynamic Programming Methods (thesis).
  • Kılıç, M., & Kaya, İ. (2014, December 3). Investment Project Evaluation by a decision-making methodology based on type-2 fuzzy sets. Applied Soft Computing. https://www.sciencedirect.com/science/article/pii/S1568494614005900
  • Kumar, S. S., (2004). “AHP- based formal system for R&D Project evaluation” Journal of Scientific&Industrial vol.63 ss.888-896
  • Kwok, C. P., & Tang, Y. M. (2023, March 4). A fuzzy MCDM approach to support customer-centric innovation in virtual reality (VR) metaverse headset design. AdvancedEngineeringInformatics.https://www.sciencedirect.com/science/article/pii/S1474034623000381
  • Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of Fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738.
  • Lukić, R. (2023). Application of DIBR and MAIRCA Methods in the e-Evaluation of the Economic Performance of the Economy of Bosnia and Herzegovina. Economic Review, XXI(1), 53–64. https://doi.org/10.51558/2303-680x.2023.21.1.53
  • Meade, L. (2002). R&D project selection using the Analytic Network Process. ResearchGate. https://www.researchgate.net/publication/3076710_RD_project_ selection_using_the_analytic_network_process
  • Özan, M. H. (2010). İşletmelerde Alınan Finansal Kararların Yatırımcı Davranışları Üzerindeki Etkilerinin İncelenmesi. YÖK Açık Bilim. https://acikbilim.yok.gov.tr/ handle/20.500.12812/553760
  • Pamučar, D., Stević, Ž., & Sremac, S. (2018). A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10(9), 393. https://doi.org/10.3390/sym10090393
  • Şen, H. (2023, March 11). R&D Project Selection with Gray-WASPAS Method. View of R&D Project Selection with Gray-WASPAS Method. https://journals.orclever.com/ ejrnd/article/view/224/126
  • Taherdoost, H., & Madanchian, M. (2023). Multi-criteria Decision making (MCDM) Methods and Concepts. Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/ encyclopedia3010006
  • Türkmen, G. F., & Topçu, Y. I. (2021). Research and Development Project Selection: A comprehensive analysis of the trends and methods. South African Journal of Industrial Engineering, 32(4), p. 34. https://doi.org/10.7166/32-4-2452
  • Uçakcıoğlu, B., & Eren, T. (2017). Hava Savunma Sanayinde Yatırım Projelerinin Çok Ölçütlü Karar Verme ve Hedef Programlama ile Seçimi. Journal of Aviation, 1(2), 39–63. https://doi.org/10.30518/jav.334675
  • Yazgan, A. E., & Agamyradova, H. (2021). SWARA ve MAIRCA Yöntemleri ı̇le Bankacılık Sektöründe Personel Seçimi. Sosyal Bilimler Araştırmaları Dergisi, 16(2), 281–290. https://doi.org/10.48145/gopsbad.999847
  • Yıldız, A. (2014), Analysis of Project Selection Process Applying with Fuzzy VIKOR Method. Anadolu University Journal of Social Sciences, 14(1). https://doi.org/10.18037/ausbd.79954
  • Yılmaz, S. (2006). Application of AHP and Fuzzy AHP to aircraft selection criterias. Ulusal Tez Merkezi.

Fuzzy Integrated Approach for Selection of Investment Project in R&D Department

Year 2025, Volume: 3 Issue: 2, 46 - 56, 16.11.2025

Abstract

Making correct decisions enables companies to maintain their operations profitably. In this regard, the objective of this study is to improve an integrated quantitative approach to support decision-making processes by considering multiple conflicting criteria and selecting investment projects of R&D center. The proposed approach consists of three stages. In the first stage, project evaluation criteria are defined and weighted using Full Consistency Method (FUCOM). It offers simplicity while ensuring reliability. Since experts also considered linguistic variables, the weights of the criteria were also evaluated with the Fuzzy FUCOM and the results of the two methods were compared. In the second stage, projects were evaluated according to defined criteria. Multi-Attributive Ideal-Real Comparative Analysis (MAIRCA) method was applied to create a ranking of alternatives. This method commonly used for multi-alternative problems in the literature, was applied to 17 alternative projects. The third stage encompasses selecting the projects to be invested. Knapsack algorithm was created under various constraints to select the optimal projects for the company. As a result of the study, four main criteria, with their sub-criteria, were defined: economic, institutional, technological and strategic. Moreover, inconsistencies were observed between the weighted criteria of the FUCOM and the Fuzzy FUCOM; however, ranking among the main criteria did not change. Also, investment alternatives were ranked under various scenarios. The findings obtained serve as a guide for all R&D centers to gaining a competitive advantage.
Note: A preliminary version of this study was also presented at “International Graduate Research Symposium – IGRS’24”.

References

  • Amiri, M. P. (2010, February 21). Project selection for oil-fields development by using the AHP and Fuzzy Topsis Methods. ELSEVIER. https://www.sciencedirect.com/science/article/pii/S0957417410001429
  • Berberler, M. E. (2009). Knapsack type problems and applications. Ulusal Tez Merkezi Anasayfa. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=VmPREawttxu E056IU7Jw2A&no=ZlbIfWhj3X iBSDUk1FpGYg
  • Dağıstanlı, H. A. (2024). An Interval-Valued Intuitionistic Fuzzy VIKOR Approach for R&D Project Selection in Defense Industry Investment Decisions. https://jscda-journal.org/index.php/jscda/article/view/28/23
  • Demir, G., & Bircan, H. (2020). Comparison of BMW and FUCOM Methods of Criteria Weighting Methods and an Application. ResearchGate.
  • Dua, T. V., Duc, D. V., Bao, N. C., & Trung, D. D. (2024). Integration of Objective Weighting Methods for Criteria and MCDM methods: Application in Material Selection. EUREKA: Physics and Engineering, (2), 131–148. https://doi.org/10.21303/2461-4262.2024.003171
  • Garrido, A. (2018). A Brief History of Fuzzy Logic. Academia.edu. https://www.academia.edu/35782229/A_Brief_History_of_Fuzzy_ Logic
  • Hacısüleyman, V. (2019). Optimization of Reservoir Operation by Using Fuzzy Logic and Dynamic Programming Methods (thesis).
  • Kılıç, M., & Kaya, İ. (2014, December 3). Investment Project Evaluation by a decision-making methodology based on type-2 fuzzy sets. Applied Soft Computing. https://www.sciencedirect.com/science/article/pii/S1568494614005900
  • Kumar, S. S., (2004). “AHP- based formal system for R&D Project evaluation” Journal of Scientific&Industrial vol.63 ss.888-896
  • Kwok, C. P., & Tang, Y. M. (2023, March 4). A fuzzy MCDM approach to support customer-centric innovation in virtual reality (VR) metaverse headset design. AdvancedEngineeringInformatics.https://www.sciencedirect.com/science/article/pii/S1474034623000381
  • Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of Fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738.
  • Lukić, R. (2023). Application of DIBR and MAIRCA Methods in the e-Evaluation of the Economic Performance of the Economy of Bosnia and Herzegovina. Economic Review, XXI(1), 53–64. https://doi.org/10.51558/2303-680x.2023.21.1.53
  • Meade, L. (2002). R&D project selection using the Analytic Network Process. ResearchGate. https://www.researchgate.net/publication/3076710_RD_project_ selection_using_the_analytic_network_process
  • Özan, M. H. (2010). İşletmelerde Alınan Finansal Kararların Yatırımcı Davranışları Üzerindeki Etkilerinin İncelenmesi. YÖK Açık Bilim. https://acikbilim.yok.gov.tr/ handle/20.500.12812/553760
  • Pamučar, D., Stević, Ž., & Sremac, S. (2018). A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10(9), 393. https://doi.org/10.3390/sym10090393
  • Şen, H. (2023, March 11). R&D Project Selection with Gray-WASPAS Method. View of R&D Project Selection with Gray-WASPAS Method. https://journals.orclever.com/ ejrnd/article/view/224/126
  • Taherdoost, H., & Madanchian, M. (2023). Multi-criteria Decision making (MCDM) Methods and Concepts. Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/ encyclopedia3010006
  • Türkmen, G. F., & Topçu, Y. I. (2021). Research and Development Project Selection: A comprehensive analysis of the trends and methods. South African Journal of Industrial Engineering, 32(4), p. 34. https://doi.org/10.7166/32-4-2452
  • Uçakcıoğlu, B., & Eren, T. (2017). Hava Savunma Sanayinde Yatırım Projelerinin Çok Ölçütlü Karar Verme ve Hedef Programlama ile Seçimi. Journal of Aviation, 1(2), 39–63. https://doi.org/10.30518/jav.334675
  • Yazgan, A. E., & Agamyradova, H. (2021). SWARA ve MAIRCA Yöntemleri ı̇le Bankacılık Sektöründe Personel Seçimi. Sosyal Bilimler Araştırmaları Dergisi, 16(2), 281–290. https://doi.org/10.48145/gopsbad.999847
  • Yıldız, A. (2014), Analysis of Project Selection Process Applying with Fuzzy VIKOR Method. Anadolu University Journal of Social Sciences, 14(1). https://doi.org/10.18037/ausbd.79954
  • Yılmaz, S. (2006). Application of AHP and Fuzzy AHP to aircraft selection criterias. Ulusal Tez Merkezi.
There are 22 citations in total.

Details

Primary Language English
Subjects Business Administration
Journal Section Research Articles
Authors

Pınar Karaçayır Turhan 0000-0002-2474-0965

Ferhan Çebi 0000-0003-3100-3020

Publication Date November 16, 2025
Submission Date July 25, 2025
Acceptance Date October 17, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

APA Karaçayır Turhan, P., & Çebi, F. (2025). Fuzzy Integrated Approach for Selection of Investment Project in R&D Department. GSU Managerial and Social Sciences Letters, 3(2), 46-56.