Review
BibTex RIS Cite

Nano/Mikromotorlar ve Biyomedikal Uygulamaları

Year 2020, Volume: 1 Issue: 1-2, 61 - 77, 30.12.2020
https://doi.org/10.5281/zenodo.4396202

Abstract

Nano/mikromotorlar enerjiyi hareket enerjisine dönüştürebilen, insan yapımı nano/mikro ölçekli cihazlardır.
Bu motorlar kimyasal yakıt, manyetik alan, ses, ışık gibi uyaranları harekete dönüştüren küçük makinelerdir.
Uygulama hedeflerine yönelik olarak farklı maddeler ve biyomalzemeler nano/mikromotorların
fonksiyonelleştirilmesinde kullanılmaktadırlar. Nano/mikromotorlar, sağlık alanında halihazırda kullanımda
olan geleneksel yöntemlerle çözülmesi zor sorunları ele almak amacı ile, görüntüleme, hedefe yönelik ilaç
salımı, algılama, detoksifikasyon, nanocerrahi ve izolasyon gibi alanlarda büyük umut vaat etmektedir. Bu
derleme makale, nano/mikromotorların sentezini, hareket mekanizmalarına göre sınıflandırılmasını ve
biyomedikal uygulamalarındaki gelişmelerini içermektedir.

References

  • [1] Venugopalan, P.L., Esteban-Fernández De Ávila, B., Pal, M., Ghosh, A., and Wang, J. (2020). Fantastic voyage of nanomotors into the cell. ACS Nano, 14, 9423–9439.
  • [2] Reinišová, L., Hermanová, S., and Pumera, M. (2019). Micro/nanomachines: What is needed for them to become a real force in cancer therapy? Nanoscale, 11, 6519–6532.
  • [3] Abdelmohsen, L.K.E.A., Peng, F., Tu, Y., and Wilson, D.A. (2014). Micro- and nano-motors for biomedical applications. Journal of Materials Chemistry B, 2, 2395–2408.
  • [4] García-López, V., Chen, F., Nilewski, L.G., Duret, G., Aliyan, A., Kolomeisky, A.B. et al. (2017). Molecular machines open cell membranes. Nature, 548, 567–572.
  • [5] Ariga, K., Li, J., Fei, J., Ji, Q., and Hill, J.P. (2016). Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Advanced Materials, 28, 1251–1286.
  • [6] Wilson, M.R., Solà, J., Carlone, A., Goldup, S.M., Lebrasseur, N., and Leigh, D.A. (2016). An autonomous chemically fuelled small-molecule motor. Nature, Nature Publishing Group. 534, 235–240.
  • [7] Yang, J., Zhang, C., Wang, X.D., Wang, W.X., Xi, N., and Liu, L.Q. (2019). Development of micro- and nanorobotics: A review. Science China Technological Sciences, 62, 1–20.
  • [8] Gao, C., Wang, Y., Ye, Z., Lin, Z., Ma, X., and He, Q. (2020). Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Advanced Materials, 2000512, 1–19.
  • [9] Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y. et al. (2004). Catalytic nanomotors: Autonomous movement of striped nanorods. Journal of the American Chemical Society, 126, 13424–13431.
  • [10] Wu, Y., Wu, Z., Lin, X., He, Q., and Li, J. (2012). Autonomous movement of controllable assembled janus capsule motors. ACS Nano, 6, 10910–10916.
  • [11] Peng, F., Tu, Y., Van Hest, J.C.M., and Wilson, D.A. (2015). Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angewandte Chemie - International Edition, 54, 11662–11665.
  • [12] Beladi-Mousavi, S.M., Khezri, B., Matějková, S., Sofer, Z., and Pumera, M. (2019). Supercapacitors in motion: Autonomous microswimmers for natural-resource recovery. Angewandte Chemie - International Edition, 58, 13340– 13344.
  • [13] Wu, Z., Wu, Y., He, W., Lin, X., Sun, J., and He, Q. (2013). Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angewandte Chemie - International Edition, 52, 7000–7003.
  • [14] Ma, X., Hortelao, A.C., Miguel-López, A., and Sánchez, S. (2016). Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. Journal of the American Chemical Society, 138, 13782–137825.
  • [15] Schattling, P.S., Ramos-Docampo, M.A., Salgueiriño, V., and Städler, B. (2017). Double-fueled janus swimmers with magnetotactic behavior. ACS Nano, 11, 3973–3983.
  • [16] Ma, X., Hahn, K., and Sanchez, S. (2015). Catalytic mesoporous janus nanomotors for active cargo delivery. Journal of the American Chemical Society, 137, 4976–4979.
  • [17] Tu, Y., Peng, F., Sui, X., Men, Y., White, P.B., Van Hest, J.C.M. et al. (2017). Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 9, 480–486.
  • [18] Katuri, J., Uspal, W.E., Simmchen, J., Miguel-López, A., and Sánchez, S. (2018). Cross-stream migration of active particles. Science Advances, 4, 1–12.
  • [19] Liu, R. and Sen, A. (2011). Autonomous nanomotor based on copper-platinum segmented nanobattery. Journal of the American Chemical Society, 133, 20064–20070.
  • [20] Demirok, U.K., Laocharoensuk, R., Manesh, K.M., and Wang, J. (2008). Ultrafast catalytic alloy nanomotors. Angewandte Chemie - International Edition, 47, 9349–9351.
  • [21] Wang, W., Duan, W., Ahmed, S., Mallouk, T.E., and Sen, A. (2013). Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today, 8, 531–554.
  • [22] Ghosh, A. and Fischer, P. (2009). Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 9, 2243–2245.
  • [23] Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., and Nelson, B.J. (2009). Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94, 2007–2010.
  • [24] Li, T., Li, J., Morozov, K.I., Wu, Z., Xu, T., Rozen, I. et al. (2017). Highly efficient freestyle magnetic nanoswimmer. Nano Letters, 17, 5092–5098.
  • [25] Maier, A.M., Weig, C., Oswald, P., Frey, E., Fischer, P., and Liedl, T. (2016). Magnetic Propulsion of microswimmers with DNA-Based flagellar bundles. Nano Letters, 16, 906–910.
  • [26] Xin, C., Yang, L., Li, J., Hu, Y., Qian, D., Fan, S. et al. (2019). Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Advanced Materials, 31, 1–10.
  • [27] Li, J., Ávila, B.E. De, Gao, W., Zhang, L., and Wang, J. (2017). Micro / nanorobots for biomedicine : Delivery , surgery, sensing, and detoxification. Science Robotics, 4(2), 1–10.
  • [28] Zhang, Y., Zhang, L., Yang, L., Vong, C.I., Chan, K.F., Wu, W.K.K. et al. (2019). Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Science Advances, 5, 1–12.
  • [29] Pal, M., Somalwar, N., Singh, A., Bhat, R., Eswarappa, S.M., Saini, D.K. et al. (2018). Maneuverability of magnetic nanomotors ınside living cells. Advanced Materials, 30, 1–7.
  • [30] Villa, K., Krejčová, L., Novotný, F., Heger, Z., Sofer, Z., and Pumera, M. (2018). Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Advanced Functional Materials, 28, 1–8.
  • [31] Guo, J., Gallegos, J.J., Tom, A.R., and Fan, D. (2018). Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano, 12, 1179–1187.
  • [32] Wang, D., Lin, Z., Zhou, C., Gao, C., and He, Q. (2019). Liquid metal gallium micromachines speed up in confining channels. Advanced Intelligent Systems, 1, 1900064.
  • [33] Liang, Z. and Fan, D. (2018). Visible light-gated reconfigurable rotary actuation of electric nanomotors. Science Advances, 4, 1–11.
  • [34] Wang, W., Castro, L.A., Hoyos, M., and Mallouk, T.E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6, 6122–6132.
  • [35] Feng, J., Yuan, J., and Cho, S.K. (2016). 2-D steering and propelling of acoustic bubble-powered microswimmers. Lab on a Chip, 16, 2317–2325.
  • [36] Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E. et al. (2015). Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. Journal of the American Chemical Society, 137, 2163–2166.
  • [37] Ahmed, D., Baasch, T., Jang, B., Pane, S., Dual, J., and Nelson, B.J. (2016). Artificial swimmers propelled by acoustically activated flagella. Nano Letters, 16, 4968–4974.
  • [38] Wang, D., Gao, C., Wang, W., Sun, M., Guo, B., Xie, H. et al. (2018). Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano, 12(10), 10212–10220.
  • [39] Xu, L., Mou, F., Gong, H., Luo, M., and Guan, J. (2017). Light-driven micro/nanomotors: From fundamentals to applications. Chemical Society Reviews, 46, 6905–6926.
  • [40] Dai, B., Wang, J., Xiong, Z., Zhan, X., Dai, W., Li, C.C. et al. (2016). Programmable artificial phototactic microswimmer. Nature Nanotechnology, 11, 1087–1092.
  • [41] Dong, R., Zhang, Q., Gao, W., Pei, A., and Ren, B. (2016). Highly efficient light-driven TiO2-Au janus micromotors. ACS Nano, 10, 839–844.
  • [42] Karshalev, E., Esteban-Fernández De Ávila, B., and Wang, J. (2018). Micromotors for “chemistry-on-the-Fly.” Journal of the American Chemical Society, 140, 3810–3820.
  • [43] Baeza, A. and Vallet-Regí, M. (2018). Nanomotors for nucleic acid, proteins, pollutants and cells detection. International Journal of Molecular Sciences, 19(6):1579.
  • [44] Dutta, D. and Sailapu, S.K. (2020). Biomedical Applications of Nanobots [Internet]. Intell. Nanomater. Drug Deliv. Appl. Elsevier.
  • [45] Sanchez, S., Soler, L., and Katuri, J. (2015). Chemically powered micro- and nanomotors. Angewandte Chemie - International Edition, 54, 1414–1444.
  • [46] Ismagilov, R.F., Schwartz, A., Bowden, N., and Whitesides, G.M. (2002). Autonomous movement and selfassembly. Angewandte Chemie - International Edition, 41, 652–654.
  • [47] Karaca, G.Y., Cogal, G.C., Eren, E., Oksuz, L., and Oksuz, A.U. (2020). RF plasma polymer modification of graphene oxide for micromotors with improved performance. Emergent Materials, 3, 613–624.
  • [48] Gao, W., Pei, A., and Wang, J. (2012). Water-driven micromotors. ACS Nano, 6(9), 8432–8438.
  • [49] Gao, W., Uygun, A., and Wang, J. (2012). Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. Journal of the American Chemical Society, 134, 897–900.
  • [50] Gao, W., Feng, X., Pei, A., Gu, Y., Li, J., and Wang, J. (2013). Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale, 5, 4696–4700.
  • [51] Baraban, L., Streubel, R., Makarov, D., Han, L., Karnaushenko, D., Schmidt, O.G. et al. (2013). Fuel-free locomotion of janus motors: Magnetically induced thermophoresis. ACS Nano, 7, 1360–1367.
  • [52] Wang, S., Liu, K., Wang, F., Peng, F., and Tu, Y. (2019). The application of micro- and nanomotors in classified drug delivery. Chemistry - An Asian Journal, 14(14), 2336-2347.
  • [53] Esteban-Fernández De Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M. et al. (2015). Single cell real-time mirnas sensing based on nanomotors. ACS Nano, 9, 6756–6764.
  • [54] Liu, L., Gao, J., Wilson, D.A., Tu, Y., and Peng, F. (2019). Fuel-free micro-/nanomotors as ıntelligent therapeutic agents. Chemistry - An Asian Journal, 14 (14), 2325–2335.
  • [55] Wang, Y., Zhou, C., Wang, W., Xu, D., Zeng, F., Zhan, C. et al. (2018). Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing angewandte. Angewandte Chemie, 611731, 13110–13113.
  • [56] Cogal, G.C., Das, P.K., Li, S., Oksuz, A.U., and Bhethanabotla, V.R. (2020). Unraveling the autonomous motion of polymer-based catalytic micromotors under chemical à acoustic hybrid power. Advanced NanoBiomed Research, 2000009, 1–7.
  • [57] Mei, Y., Solovev, A.A., Sanchez, S., and Schmidt, O.G. (2011). Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chemical Society Reviews, 40, 2109–2119.
  • [58] Dong, Y., Yi, C., Yang, S., Wang, J., Chen, P., Liu, X. et al. (2019). A substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotics. Nanoscale, 11, 4562–70.
  • [59] Li, J., Li, T., Xu, T., Kiristi, M., Liu, W., Wu, Z. et al. (2015). Magneto-acoustic hybrid nanomotor. Nano Letters, 15, 4814–4821.
  • [60] Gao, W., Sattayasamitsathit, S., Manesh, K.M., Weihs, D., and Wang, J. (2010). Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society, 132, 14403–14405.
  • [61] Yuan, K., Bujalance-Fernández, J., Jurado-Sánchez, B., and Escarpa, A. (2020). Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Microchimica Acta, 187.
  • [62] Martín, A., Jurado-Sánchez, B., Escarpa, A., and Wang, J. (2015). Template electrosynthesis of high-performance graphene microengines. Small, 11, 3568–3574.
  • [63] Puigmartí-Luis, J., Pellicer, E., Jang, B., Chatzipirpiridis, G., Sevim, S., Chen, X.-Z. et al. (2020) Magnetically and chemically propelled nanowire-based swimmers. Magnetic Nano- and Microwires, 777–799.
  • [64] Gao, W., Manesh, K.M., Hua, J., Sattayasamitsathit, S., and Wang, J. (2011). Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small, 7, 2047–2051.
  • [65] Ahmed, S., Wang, W., Mair, L.O., Fraleigh, R.D., Li, S., Castro, L.A. et al. (2013). Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir, 29, 16113– 16118.
  • [66] Esteban-Fernández De Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M. et al. (2015). Single cell real-time mirnas sensing based on nanomotors. ACS Nano, 9, 6756–6764.
  • [67] Gao, W., Sattayasamitsathit, S., Uygun, A., Pei, A., Ponedal, A., and Wang, J. (2012). Polymer-based tubular microbots: Role of composition and preparation. Nanoscale, 4, 2447–2453.
  • [68] Yuan, K., De La Asunción-Nadal, V., Jurado-Sánchez, B., and Escarpa, A. (2020). 2D Nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chemistry of Materials, 32, 1983–1992.
  • [69] Wu, Y., Dong, R., Zhang, Q., and Ren, B. (2017). Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au janus micromotors. Nano-Micro Letters, 9, 30.
  • [70] Delezuk, J.A.M., Ramírez-Herrera, D.E., Esteban-Fernández de Ávila, B., and Wang, J. (2017) Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale, 9, 2195–2200.
  • [71] Uygun, D.A., Jurado-Sánchez, B., Uygun, M., and Wang, J. (2016). Self-propelled chelation platforms for efficient removal of toxic metals. Environmental Science: Nano, 3, 559–566.
  • [72] Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I. et al. (2016). Transient micromotors that disappear when no longer needed. ACS Nano, 10, 10389–10396.
  • [73] Jurado-Sánchez, B., Sattayasamitsathit, S., Gao, W., Santos, L., Fedorak, Y., Singh, V. V. et al. (2015). Selfpropelled activated carbon janus micromotors for efficient water purification. Small, 11, 499–506.
  • [74] Dong, R., Li, J., Rozen, I., Ezhilan, B., Xu, T., Christianson, C. et al. (2015). Vapor-driven propulsion of catalytic micromotors. Scientific Reports, 5, 1–7.
  • [75] Zhang, B., Huang, G., Wang, L., Wang, T., Liu, L., Di, Z. et al. (2019). Rolled-up monolayer graphene tubular micromotors: Enhanced performance and antibacterial property. Chemistry - An Asian Journal, 14, 2479–2484.
  • [76] Tertis, M., Cernat, A., Mirel, S., and Cristea, C. (2020). Nanodevices for pharmaceutical and biomedical applications. Analytical Letters, 1–26.
  • [77] Öksüz, L., Yurdabak Karaca, G., Kuralay, F., Uygun, E., Koç, İ.Ü., and Uygun Öksüz, A. (2018). Preparation of self-propelled Cu-Pt micromotors and their application in miRNA monitoring. Turkish Journal of Chemistry, 42, 1744–1754.
  • [78] Ela, S.E., Remskar, M., Karaca, G.Y., Oksuz, L., Uygun, E., and Oksuz, A.U. (2019). RF plasma modified W5O14 and MoS2 hybrid nanostructures and photovoltaic properties. Particulate Science and Technology, 37, 612– 618.
  • [79] Gao, W., de Ávila, B.E.F., Zhang, L., and Wang, J. (2018). Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 125, 94–101.
  • [80] Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D. et al. (2010). Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small, 6, 2741–2747.
  • [81] Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E. et al. (2012). Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small, 8, 460–467.
  • [82] Wu, Y., Lin, X., Wu, Z., Möhwald, H., and He, Q. (2014). Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Applied Materials and Interfaces, 6, 10476–10481.
  • [83] Liu, K., Ou, J., Wang, S., Gao, J., Liu, L., Ye, Y. et al. (2020). Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today, 20, 100694.
  • [84] Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S. et al. (2012). Self-propelled nanotools. ACS Nano, 6, 1751–1756.
  • [85] Xi, W., Solovev, A.A., Ananth, A.N., Gracias, D.H., Sanchez, S., and Schmidt, O.G. (2013). Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery. Nanoscale, 5, 1294–12947.
  • [86] Vilela, D., Coss, U., Parmar, J., Mart, A.M., Go, V., Llop, J. et al. (2018). Medical ımaging for the tracking of micromotors. ACS Nano, 12(2), 1220–1227.
Year 2020, Volume: 1 Issue: 1-2, 61 - 77, 30.12.2020
https://doi.org/10.5281/zenodo.4396202

Abstract

References

  • [1] Venugopalan, P.L., Esteban-Fernández De Ávila, B., Pal, M., Ghosh, A., and Wang, J. (2020). Fantastic voyage of nanomotors into the cell. ACS Nano, 14, 9423–9439.
  • [2] Reinišová, L., Hermanová, S., and Pumera, M. (2019). Micro/nanomachines: What is needed for them to become a real force in cancer therapy? Nanoscale, 11, 6519–6532.
  • [3] Abdelmohsen, L.K.E.A., Peng, F., Tu, Y., and Wilson, D.A. (2014). Micro- and nano-motors for biomedical applications. Journal of Materials Chemistry B, 2, 2395–2408.
  • [4] García-López, V., Chen, F., Nilewski, L.G., Duret, G., Aliyan, A., Kolomeisky, A.B. et al. (2017). Molecular machines open cell membranes. Nature, 548, 567–572.
  • [5] Ariga, K., Li, J., Fei, J., Ji, Q., and Hill, J.P. (2016). Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Advanced Materials, 28, 1251–1286.
  • [6] Wilson, M.R., Solà, J., Carlone, A., Goldup, S.M., Lebrasseur, N., and Leigh, D.A. (2016). An autonomous chemically fuelled small-molecule motor. Nature, Nature Publishing Group. 534, 235–240.
  • [7] Yang, J., Zhang, C., Wang, X.D., Wang, W.X., Xi, N., and Liu, L.Q. (2019). Development of micro- and nanorobotics: A review. Science China Technological Sciences, 62, 1–20.
  • [8] Gao, C., Wang, Y., Ye, Z., Lin, Z., Ma, X., and He, Q. (2020). Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Advanced Materials, 2000512, 1–19.
  • [9] Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y. et al. (2004). Catalytic nanomotors: Autonomous movement of striped nanorods. Journal of the American Chemical Society, 126, 13424–13431.
  • [10] Wu, Y., Wu, Z., Lin, X., He, Q., and Li, J. (2012). Autonomous movement of controllable assembled janus capsule motors. ACS Nano, 6, 10910–10916.
  • [11] Peng, F., Tu, Y., Van Hest, J.C.M., and Wilson, D.A. (2015). Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angewandte Chemie - International Edition, 54, 11662–11665.
  • [12] Beladi-Mousavi, S.M., Khezri, B., Matějková, S., Sofer, Z., and Pumera, M. (2019). Supercapacitors in motion: Autonomous microswimmers for natural-resource recovery. Angewandte Chemie - International Edition, 58, 13340– 13344.
  • [13] Wu, Z., Wu, Y., He, W., Lin, X., Sun, J., and He, Q. (2013). Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angewandte Chemie - International Edition, 52, 7000–7003.
  • [14] Ma, X., Hortelao, A.C., Miguel-López, A., and Sánchez, S. (2016). Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. Journal of the American Chemical Society, 138, 13782–137825.
  • [15] Schattling, P.S., Ramos-Docampo, M.A., Salgueiriño, V., and Städler, B. (2017). Double-fueled janus swimmers with magnetotactic behavior. ACS Nano, 11, 3973–3983.
  • [16] Ma, X., Hahn, K., and Sanchez, S. (2015). Catalytic mesoporous janus nanomotors for active cargo delivery. Journal of the American Chemical Society, 137, 4976–4979.
  • [17] Tu, Y., Peng, F., Sui, X., Men, Y., White, P.B., Van Hest, J.C.M. et al. (2017). Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 9, 480–486.
  • [18] Katuri, J., Uspal, W.E., Simmchen, J., Miguel-López, A., and Sánchez, S. (2018). Cross-stream migration of active particles. Science Advances, 4, 1–12.
  • [19] Liu, R. and Sen, A. (2011). Autonomous nanomotor based on copper-platinum segmented nanobattery. Journal of the American Chemical Society, 133, 20064–20070.
  • [20] Demirok, U.K., Laocharoensuk, R., Manesh, K.M., and Wang, J. (2008). Ultrafast catalytic alloy nanomotors. Angewandte Chemie - International Edition, 47, 9349–9351.
  • [21] Wang, W., Duan, W., Ahmed, S., Mallouk, T.E., and Sen, A. (2013). Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today, 8, 531–554.
  • [22] Ghosh, A. and Fischer, P. (2009). Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 9, 2243–2245.
  • [23] Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., and Nelson, B.J. (2009). Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94, 2007–2010.
  • [24] Li, T., Li, J., Morozov, K.I., Wu, Z., Xu, T., Rozen, I. et al. (2017). Highly efficient freestyle magnetic nanoswimmer. Nano Letters, 17, 5092–5098.
  • [25] Maier, A.M., Weig, C., Oswald, P., Frey, E., Fischer, P., and Liedl, T. (2016). Magnetic Propulsion of microswimmers with DNA-Based flagellar bundles. Nano Letters, 16, 906–910.
  • [26] Xin, C., Yang, L., Li, J., Hu, Y., Qian, D., Fan, S. et al. (2019). Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Advanced Materials, 31, 1–10.
  • [27] Li, J., Ávila, B.E. De, Gao, W., Zhang, L., and Wang, J. (2017). Micro / nanorobots for biomedicine : Delivery , surgery, sensing, and detoxification. Science Robotics, 4(2), 1–10.
  • [28] Zhang, Y., Zhang, L., Yang, L., Vong, C.I., Chan, K.F., Wu, W.K.K. et al. (2019). Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Science Advances, 5, 1–12.
  • [29] Pal, M., Somalwar, N., Singh, A., Bhat, R., Eswarappa, S.M., Saini, D.K. et al. (2018). Maneuverability of magnetic nanomotors ınside living cells. Advanced Materials, 30, 1–7.
  • [30] Villa, K., Krejčová, L., Novotný, F., Heger, Z., Sofer, Z., and Pumera, M. (2018). Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Advanced Functional Materials, 28, 1–8.
  • [31] Guo, J., Gallegos, J.J., Tom, A.R., and Fan, D. (2018). Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano, 12, 1179–1187.
  • [32] Wang, D., Lin, Z., Zhou, C., Gao, C., and He, Q. (2019). Liquid metal gallium micromachines speed up in confining channels. Advanced Intelligent Systems, 1, 1900064.
  • [33] Liang, Z. and Fan, D. (2018). Visible light-gated reconfigurable rotary actuation of electric nanomotors. Science Advances, 4, 1–11.
  • [34] Wang, W., Castro, L.A., Hoyos, M., and Mallouk, T.E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6, 6122–6132.
  • [35] Feng, J., Yuan, J., and Cho, S.K. (2016). 2-D steering and propelling of acoustic bubble-powered microswimmers. Lab on a Chip, 16, 2317–2325.
  • [36] Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E. et al. (2015). Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. Journal of the American Chemical Society, 137, 2163–2166.
  • [37] Ahmed, D., Baasch, T., Jang, B., Pane, S., Dual, J., and Nelson, B.J. (2016). Artificial swimmers propelled by acoustically activated flagella. Nano Letters, 16, 4968–4974.
  • [38] Wang, D., Gao, C., Wang, W., Sun, M., Guo, B., Xie, H. et al. (2018). Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano, 12(10), 10212–10220.
  • [39] Xu, L., Mou, F., Gong, H., Luo, M., and Guan, J. (2017). Light-driven micro/nanomotors: From fundamentals to applications. Chemical Society Reviews, 46, 6905–6926.
  • [40] Dai, B., Wang, J., Xiong, Z., Zhan, X., Dai, W., Li, C.C. et al. (2016). Programmable artificial phototactic microswimmer. Nature Nanotechnology, 11, 1087–1092.
  • [41] Dong, R., Zhang, Q., Gao, W., Pei, A., and Ren, B. (2016). Highly efficient light-driven TiO2-Au janus micromotors. ACS Nano, 10, 839–844.
  • [42] Karshalev, E., Esteban-Fernández De Ávila, B., and Wang, J. (2018). Micromotors for “chemistry-on-the-Fly.” Journal of the American Chemical Society, 140, 3810–3820.
  • [43] Baeza, A. and Vallet-Regí, M. (2018). Nanomotors for nucleic acid, proteins, pollutants and cells detection. International Journal of Molecular Sciences, 19(6):1579.
  • [44] Dutta, D. and Sailapu, S.K. (2020). Biomedical Applications of Nanobots [Internet]. Intell. Nanomater. Drug Deliv. Appl. Elsevier.
  • [45] Sanchez, S., Soler, L., and Katuri, J. (2015). Chemically powered micro- and nanomotors. Angewandte Chemie - International Edition, 54, 1414–1444.
  • [46] Ismagilov, R.F., Schwartz, A., Bowden, N., and Whitesides, G.M. (2002). Autonomous movement and selfassembly. Angewandte Chemie - International Edition, 41, 652–654.
  • [47] Karaca, G.Y., Cogal, G.C., Eren, E., Oksuz, L., and Oksuz, A.U. (2020). RF plasma polymer modification of graphene oxide for micromotors with improved performance. Emergent Materials, 3, 613–624.
  • [48] Gao, W., Pei, A., and Wang, J. (2012). Water-driven micromotors. ACS Nano, 6(9), 8432–8438.
  • [49] Gao, W., Uygun, A., and Wang, J. (2012). Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. Journal of the American Chemical Society, 134, 897–900.
  • [50] Gao, W., Feng, X., Pei, A., Gu, Y., Li, J., and Wang, J. (2013). Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale, 5, 4696–4700.
  • [51] Baraban, L., Streubel, R., Makarov, D., Han, L., Karnaushenko, D., Schmidt, O.G. et al. (2013). Fuel-free locomotion of janus motors: Magnetically induced thermophoresis. ACS Nano, 7, 1360–1367.
  • [52] Wang, S., Liu, K., Wang, F., Peng, F., and Tu, Y. (2019). The application of micro- and nanomotors in classified drug delivery. Chemistry - An Asian Journal, 14(14), 2336-2347.
  • [53] Esteban-Fernández De Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M. et al. (2015). Single cell real-time mirnas sensing based on nanomotors. ACS Nano, 9, 6756–6764.
  • [54] Liu, L., Gao, J., Wilson, D.A., Tu, Y., and Peng, F. (2019). Fuel-free micro-/nanomotors as ıntelligent therapeutic agents. Chemistry - An Asian Journal, 14 (14), 2325–2335.
  • [55] Wang, Y., Zhou, C., Wang, W., Xu, D., Zeng, F., Zhan, C. et al. (2018). Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing angewandte. Angewandte Chemie, 611731, 13110–13113.
  • [56] Cogal, G.C., Das, P.K., Li, S., Oksuz, A.U., and Bhethanabotla, V.R. (2020). Unraveling the autonomous motion of polymer-based catalytic micromotors under chemical à acoustic hybrid power. Advanced NanoBiomed Research, 2000009, 1–7.
  • [57] Mei, Y., Solovev, A.A., Sanchez, S., and Schmidt, O.G. (2011). Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chemical Society Reviews, 40, 2109–2119.
  • [58] Dong, Y., Yi, C., Yang, S., Wang, J., Chen, P., Liu, X. et al. (2019). A substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotics. Nanoscale, 11, 4562–70.
  • [59] Li, J., Li, T., Xu, T., Kiristi, M., Liu, W., Wu, Z. et al. (2015). Magneto-acoustic hybrid nanomotor. Nano Letters, 15, 4814–4821.
  • [60] Gao, W., Sattayasamitsathit, S., Manesh, K.M., Weihs, D., and Wang, J. (2010). Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society, 132, 14403–14405.
  • [61] Yuan, K., Bujalance-Fernández, J., Jurado-Sánchez, B., and Escarpa, A. (2020). Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Microchimica Acta, 187.
  • [62] Martín, A., Jurado-Sánchez, B., Escarpa, A., and Wang, J. (2015). Template electrosynthesis of high-performance graphene microengines. Small, 11, 3568–3574.
  • [63] Puigmartí-Luis, J., Pellicer, E., Jang, B., Chatzipirpiridis, G., Sevim, S., Chen, X.-Z. et al. (2020) Magnetically and chemically propelled nanowire-based swimmers. Magnetic Nano- and Microwires, 777–799.
  • [64] Gao, W., Manesh, K.M., Hua, J., Sattayasamitsathit, S., and Wang, J. (2011). Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small, 7, 2047–2051.
  • [65] Ahmed, S., Wang, W., Mair, L.O., Fraleigh, R.D., Li, S., Castro, L.A. et al. (2013). Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir, 29, 16113– 16118.
  • [66] Esteban-Fernández De Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M. et al. (2015). Single cell real-time mirnas sensing based on nanomotors. ACS Nano, 9, 6756–6764.
  • [67] Gao, W., Sattayasamitsathit, S., Uygun, A., Pei, A., Ponedal, A., and Wang, J. (2012). Polymer-based tubular microbots: Role of composition and preparation. Nanoscale, 4, 2447–2453.
  • [68] Yuan, K., De La Asunción-Nadal, V., Jurado-Sánchez, B., and Escarpa, A. (2020). 2D Nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chemistry of Materials, 32, 1983–1992.
  • [69] Wu, Y., Dong, R., Zhang, Q., and Ren, B. (2017). Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au janus micromotors. Nano-Micro Letters, 9, 30.
  • [70] Delezuk, J.A.M., Ramírez-Herrera, D.E., Esteban-Fernández de Ávila, B., and Wang, J. (2017) Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale, 9, 2195–2200.
  • [71] Uygun, D.A., Jurado-Sánchez, B., Uygun, M., and Wang, J. (2016). Self-propelled chelation platforms for efficient removal of toxic metals. Environmental Science: Nano, 3, 559–566.
  • [72] Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I. et al. (2016). Transient micromotors that disappear when no longer needed. ACS Nano, 10, 10389–10396.
  • [73] Jurado-Sánchez, B., Sattayasamitsathit, S., Gao, W., Santos, L., Fedorak, Y., Singh, V. V. et al. (2015). Selfpropelled activated carbon janus micromotors for efficient water purification. Small, 11, 499–506.
  • [74] Dong, R., Li, J., Rozen, I., Ezhilan, B., Xu, T., Christianson, C. et al. (2015). Vapor-driven propulsion of catalytic micromotors. Scientific Reports, 5, 1–7.
  • [75] Zhang, B., Huang, G., Wang, L., Wang, T., Liu, L., Di, Z. et al. (2019). Rolled-up monolayer graphene tubular micromotors: Enhanced performance and antibacterial property. Chemistry - An Asian Journal, 14, 2479–2484.
  • [76] Tertis, M., Cernat, A., Mirel, S., and Cristea, C. (2020). Nanodevices for pharmaceutical and biomedical applications. Analytical Letters, 1–26.
  • [77] Öksüz, L., Yurdabak Karaca, G., Kuralay, F., Uygun, E., Koç, İ.Ü., and Uygun Öksüz, A. (2018). Preparation of self-propelled Cu-Pt micromotors and their application in miRNA monitoring. Turkish Journal of Chemistry, 42, 1744–1754.
  • [78] Ela, S.E., Remskar, M., Karaca, G.Y., Oksuz, L., Uygun, E., and Oksuz, A.U. (2019). RF plasma modified W5O14 and MoS2 hybrid nanostructures and photovoltaic properties. Particulate Science and Technology, 37, 612– 618.
  • [79] Gao, W., de Ávila, B.E.F., Zhang, L., and Wang, J. (2018). Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 125, 94–101.
  • [80] Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D. et al. (2010). Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small, 6, 2741–2747.
  • [81] Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E. et al. (2012). Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small, 8, 460–467.
  • [82] Wu, Y., Lin, X., Wu, Z., Möhwald, H., and He, Q. (2014). Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Applied Materials and Interfaces, 6, 10476–10481.
  • [83] Liu, K., Ou, J., Wang, S., Gao, J., Liu, L., Ye, Y. et al. (2020). Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today, 20, 100694.
  • [84] Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S. et al. (2012). Self-propelled nanotools. ACS Nano, 6, 1751–1756.
  • [85] Xi, W., Solovev, A.A., Ananth, A.N., Gracias, D.H., Sanchez, S., and Schmidt, O.G. (2013). Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery. Nanoscale, 5, 1294–12947.
  • [86] Vilela, D., Coss, U., Parmar, J., Mart, A.M., Go, V., Llop, J. et al. (2018). Medical ımaging for the tracking of micromotors. ACS Nano, 12(2), 1220–1227.
There are 86 citations in total.

Details

Primary Language Turkish
Journal Section Derlemeler
Authors

Gözde Yurdabak Karaca

Ayşegül Uygun Öksüz This is me

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1-2

Cite

APA Yurdabak Karaca, G., & Uygun Öksüz, A. (2020). Nano/Mikromotorlar ve Biyomedikal Uygulamaları. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 61-77. https://doi.org/10.5281/zenodo.4396202
AMA Yurdabak Karaca G, Uygun Öksüz A. Nano/Mikromotorlar ve Biyomedikal Uygulamaları. GÜFFD. December 2020;1(1-2):61-77. doi:10.5281/zenodo.4396202
Chicago Yurdabak Karaca, Gözde, and Ayşegül Uygun Öksüz. “Nano/Mikromotorlar Ve Biyomedikal Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, no. 1-2 (December 2020): 61-77. https://doi.org/10.5281/zenodo.4396202.
EndNote Yurdabak Karaca G, Uygun Öksüz A (December 1, 2020) Nano/Mikromotorlar ve Biyomedikal Uygulamaları. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 61–77.
IEEE G. Yurdabak Karaca and A. Uygun Öksüz, “Nano/Mikromotorlar ve Biyomedikal Uygulamaları”, GÜFFD, vol. 1, no. 1-2, pp. 61–77, 2020, doi: 10.5281/zenodo.4396202.
ISNAD Yurdabak Karaca, Gözde - Uygun Öksüz, Ayşegül. “Nano/Mikromotorlar Ve Biyomedikal Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (December 2020), 61-77. https://doi.org/10.5281/zenodo.4396202.
JAMA Yurdabak Karaca G, Uygun Öksüz A. Nano/Mikromotorlar ve Biyomedikal Uygulamaları. GÜFFD. 2020;1:61–77.
MLA Yurdabak Karaca, Gözde and Ayşegül Uygun Öksüz. “Nano/Mikromotorlar Ve Biyomedikal Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 1, no. 1-2, 2020, pp. 61-77, doi:10.5281/zenodo.4396202.
Vancouver Yurdabak Karaca G, Uygun Öksüz A. Nano/Mikromotorlar ve Biyomedikal Uygulamaları. GÜFFD. 2020;1(1-2):61-77.