Demir Bazlı Manyetik Nanopartiküllerin Genotoksik Etkilerinin Drosophila melanogaster’de Araştırılması (Araştırma Makalesi)
Year 2024,
Volume: 5 Issue: 1, 39 - 51, 29.05.2024
Ayşen Yağmur Burgazlı
,
Merve Güneş
,
Burcin Yalcin
,
Ghada Tagorti
,
Bülent Kaya
Abstract
Manyetik nanopartiküller (MNP’ler) günümüzde nanopartiküllerin yeni bir sınıfı olarak biyosensörler, tıbbi tanı ve tedavi, manyetik rezonans görüntüleme ve daha birçok alanda sıklıkla kullanılmaya başlanmıştır. MNP’lerin kullanım alanları arasında özellikle insan üzerinde yaygın uygulama alanlarına sahip olmaları ve ayrıca potansiyel toksisiteleri hakkında literatürde bilgi eksikliği olması sebebiyle MNP’lerin kullanımı oldukça endişe uyandırıcı bir durum haline gelmiştir. Bu bağlamda MNP’lerin toksikolojik açıdan değerlendirilmeleri büyük bir önem taşımaktadır. Bu bağlamda çalışmamızda 4 farklı MNP’nin (Fe3O4 NP, NiFe2O4 NP, CoFe2O4 NP ve MnFe2O4 NP) genotoksik potansiyelleri, genotoksikoloji alanında sıklıkla kullanılan bir model organizma olan Drosophila melanogaster ile kanat somatik mutasyon ve rekombinasyon testi (SMART) yöntemi çalışılarak araştırılmıştır. Çalışmada kullanılan uygulama konsantrasyonları 1, 3, 5 ve 10 mM olarak belirlenmiştir. SMART yönteminden elde edilen sonuçlara göre; NiFe2O4 MNP’lerinin en yüksek konsantrasyonunda (10 mM) ve CoFe2O4 MNP’nin ise 3, 5 ve 10 mM’lık konsantrasyonlarında toplam klon sayısı parametresine göre istatistiksel olarak anlamlı sonuçların ortaya çıktığı ve genotoksisitenin indüklendiği tespit edilmiştir.
Supporting Institution
Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
FYL-2021-5714
Thanks
Bu çalışma Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2021-5714 numaralı proje ile desteklenmiştir.
References
- Singh, S.P. (2016). Nanotechnology: A Journey towards finding solutions. Journal of Materials Science Research, 5(1), 61-76.
- Kaur, R. and Kaur, K. (2024). Scope of Nanotechnology in Food Packaging. Advances in Sustainable Food Packaging Technology. Apple Academic Press. 135-160.
- Barik, T.K., Mandal, S.M., Mitra, S., Maity, G.C., Roymahapatra, G., and Santra, T.S. (2020). Prospect of nanotechnology: A brief review. Journal of Indiand Chemical Society, 97(11b), 2372-2384.
- Saleh, T.A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20(2020), 1-16.
- Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H., and Yang, S. (2010). Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials, 31(13), 3667-3673.
- Selim, M.M., El-Safty, S., Tounsi, A., and Shenashen, M. (2024). A review of magnetic nanoparticles used in nanomedicine. APL Materials, 12(1), 1-14.
- Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., and Farokhzad, O.C. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 83(5), 761-769.
- Shahri, M.M. (2020). Harnessing Nanoscale Surface Interactions. Magnetic Materials and Magnetic Nanocomposites for Biomedical Applications. Elsevier Inc. All. 77-95.
- Kettering, M., Zorn, H., Bremer-Streck, S., Oehring, H., Zeisberger, M., Bergemann, C., Hergt, R., Halbhuber, K.J., Kaiser, W.A., and Hilger, I. (2009). Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Physics in Medicine & Biology, 54(17), 5109-5121.
- Ghazanfari, M.R., Kashefi, M., Shams, S.F., and Jaafari, M.R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International, 2016, 1-32.
- Arias, L.S., Pessan, J.P., Vieria, A.P.M., Toito de Lima, T.M., Delbem, A.C.B., and Monteiro, D.R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel), 7(2), 1-32.
- Ansari, S.A.M.K., Ficiara, E., Ruffinatti, F.A., Stura, I., Argenziano, M., Abollino, O., Cavalli, R., Guiot, C., and D’Agata, F. (2019). Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel), 12(3), 1-24.
- Katz, E. (2019). Synthesis, properties and applications of magnetic nanoparticles and nanowires-A brief introduction. Magnetochemistry, 5(4), 1-15.
- Cattaneo, A.G., Gornati, R., Sabbioni, E., Chiriva-Internati, M., Cobos, E., Jenkins, M.R., and Bernardini, G. (2010). Nanotechnology and human health: risks and benefits. Journal of Applied Toxicology, 30(8), 730-744.
- Jiang, Z., Shan, K., Song, J., Liu, J., Rajendran, S., Pugazhendhi, A., Jacob, J.A., and Chen, B. (2019). Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sciences, 220, 156-161.
- Dandamudi, S. And Campbell, R.B. (2007). The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 28(31), 4673-4683.
- Lübbe, A.S., Bergemann, C., Brock, J., and McLure, D.G. (1999). Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials, 194(1-3), 149-155.
- Shen, L., Li, B., and Qiao, Y. (2018). Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 11(2), 324.
- Wang, Y., Lee, Y., Chou, C., Chang, Y., Liu, W., and Chu, H. (2024). Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. Environmental Pollution, 346(1).
- Mahmoud, A., Ezgi, Ö., Merve, A., and Özhan, G. (2016). In Vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. International Journal of Toxicology, 35(4), 429-437.
- Bhatt, I. and Tripathi, B.N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82(3), 308-317.
- Baker, T.J., Tyler, C.R., and Galloway, T.S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
- Kim, T., Kim, M., Park, H., Shin, U.S., Gong, M., and Kim, H. (2012). Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A, 100A(4), 1033-1043.
- Huang, Y., Wu, C., and Aronstam, R.S. (2010). Toxicity of Transition Metal Oxide Nanoparticles: Recent insights from in vitro studies. Materials (Basel), 3(10), 4842-4859.
- Carmona, E.R., Inostroza-Blancheteau, C., Obando, V., Rubio, L., and Marcos, R. (2015). Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 791, 1-11.
- Carmona, E.R., Inostroza-Blancheteau, C., Rubio, L., and Marcos, R. (2016). Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health, 32(12), 1987-2001.
- Jeon, Y., Park, S., and Lee, M. (2011). Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Animal Cells and Systems, 15(2), 107-114.
- Malhotra, N., Lee, J., Liman, R.A.D., Ruallo, J.M.S., Villaflores, O.B., Ger, T., and Hsiao, C. (2020). Potential toxicity of iron oxide magnetic nanoparticles: A Review. Molecules, 25(14), 1-26.
- Ong, C., Yung, L.L., Cai, Y., Bay, B., and Baeg, G. (2015). Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology, 9(3), 396-403.
- Vecchio, G., Galeone, A., Malvindi, M.A., Cingolani, R., and Pompa, P.P. (2013). Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster. Journal of Nanoparticle Research, 15, 1-7.
- Demir, E. (2020). An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: Toxicity, cellular uptake, oxidative stress, and DNA damage. Journal of Toxicology and Environmental Health, Part A, 83(11-12), 456-469.
- Ertuğrul, H., Yalçın, B., Güneş, M., and Kaya, B. (2020). Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug and Chemical Toxicology, 43(3), 279-286.
- Jacob, J.A., Salmani, J.M.M., and Chen, B. (2016). Magnetic nanoparticles: Mechanistic studies on the cancer cell interaction. Nanotechnology Reviews, 5(5), 481-488.
- Flagg, R.O. (1988). Carolina Drosophila Manual. Carolina Biological Supply Company, North Carolina.
- Lewis, E.B. (1960). A new standard food medium. Drosophila Information Service, 34, 118-119.
- Kurşun, A.Y., Yalçın, B., Güneş, M., Tagorti, G., and Kaya, B. (2021). MgO nanopartiküllerinin Drosophila melanogaster üzerindeki davranışsal toksisitesinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1283-1294.
- Güneş, M., Yalçın, B., Burgazlı, A.Y., Tagorti, G., Yavuz, E., Akarsu, E., Kaya, N., Marcos, R., and Kaya, B. (2023). Morphologically different hydroxyapatite nanoparticles exert differential genotoxic effects in Drosophila. Science of The Total Environment, 904, 1-15.
- Yalçın, B., Güneş, M., Kurşun, A.Y., Kaya, N., Marcos, R., and Kaya, B., (2022). Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology, 16(3), 393-407.
- Graf, U., Wurgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., and Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental mutagenesis, 6(2), 153-188.
- Marcos, R. and Carmona, E.R. (2013). The wing-spot and the comet tests as useful assays detecting genotoxicity in Drosophila. Methods in Molecular Biology, 1044, 417-427.
- Ucar, A., Arslan, M.E., Yeltekin, A.C., Ozgeris, F.B., Yıldırım, O.C., Parlak, V., Alak, G., Turkez, H., and Atamanalp, M. (2023). Neutralization of iron oxide magnetic nanoparticle aquatoxicity on Oncorhynchus mykiss via supplementation with ulexite. Drug and Chemical Toxicology, 5, 1-13.
- Hussain, S.M., Hess, K.L, Gearhart, J.M., Geiss, K.T., and Schlager, J.J. (2005). In vitro toxicity of nanoparticles BRL 3A rat liver cells. Toxicology In Vitro, 19(7), 975-983.
- Coccini, T., Caloni, F., Cando, L.J.R., and De Simone, U. (2017). Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. Journal of Applied Toxicology, 37(3), 361-373.
- Ahamed, M., Alhadlaq, H.A., Alam, J., Khan, M.A.M., Ali, D., and Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Current Pharmaceutical Design, 19(37), 6681-6690.
- Szalay, B., Tatrai, E., Nyiro, G., Vezer, T., and Dura, G. (2012). Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. Journal of Applied Toxicology, 32(6), 446-453.
- Zhang, Y., Wang, Z., Li, X., Wang, L., Yin, M., Wang, L., Chen, N., Fan, C., and Song, H. (2016). Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. Advanced Materials, 28(7), 1387-1393.
- Kakavoulia, M., Karakota, M., Kaloyianni, M., Halevas, E., Sagnou, M., Galliou, P.A., and Koliakos, G. (2022). The cytotoxicity effect of a bis-MPA-based dendron, a bis-MPA-PEG dendrimer and a magnetite nanoparticle on stimulated and non-stimulated human blood lymphocytes. Toxicology In Vitro, 82.
- Ahamed, M., Akhtar, M.J., Siddiqui, M.A., Ahmad, J., Musarrat, J., Al-Khedhairy, A.A., AlSalhi, M.S., and Alrokayan, S.A. (2011). Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 283(2-3), 101-108.
- Ahamed, M., Akhtar, M.J., Alhadlaq, H.A., Khan, M.A.M., and Alrokayan, S.A. (2015). Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MCF-7 cancer cells. Chemosphere, 135, 278-288.
- Yin, H., Too, H.P., and Chow, G.M. (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials, 26(29), 5818-5826.
- Nas, B. And Çolak, D.A. (2020). Genotoxic analysis of nickel-iron oxide in Drosophila. Toxicology and Industrial Health, 36(11), 835-843.
- Colognato, R., Bonelli, A., Bonacchi, D., Baldi, G., and Migliore, L. (2007). Analysis of cobalt ferrite nanoparticles induced genotoxicity on human peripheral lymphocytes: comparison of size and organic grafting dependent effects. Nanotoxicology, 1(4), 301-308.
- Marmorato, P., Ceccone, G., Gianoncelli, A., Pascolo, L., Ponti, J., Rossi, F., Salome, M., Kaulich, B., and Kiskinova, M. (2011). Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicology Letters, 207(2), 128-136.
- Aşık, E., Akpınar, Y., Güray, N.T., İşcan, M., Demircigil, G.Ç., and Volkan, M. (2016). Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicology Research, 5(6), 1649-1662.
- Abudayyak, M., Gurkaynak, T.A., and Özhan, G. (2017). In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicology and Industrial Health, 33(8), 646-654.
- Sousa, C.A., Soaresi H.M.V.M., and Soares, E.V. (2019). Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquatic Toxicology, 214, 1-10.
- Ghosh, I., Sadhu, A., Moriyasu, Y., Bandyopadhyay, M., and Mukherjee, A. (2019). Manganese oxide nanoparticles induce genotoxicity and DNA hypomethylation in the moss Physcomitrella patens. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 146-157.
- Singh, S.P., Kumari, M., Kumari, S.I., Rahman, M.F., Kamal, S.S.K., Mahboob, M., and Grover, P. (2013). Genotoxicity of nano- and micron-sized manganese oxide in rats after acute oral tretment. Mutation Research, 754(1-2), 39-50.
- Kurşun, A.Y. (2022). Drosophila melanogaster’de Demir Bazlı Metalik-Manyetik Nanopartiküllerin Etkilerinin Araştırılması. Yüksek Lisans Tezi. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü. Antalya. 81.
Year 2024,
Volume: 5 Issue: 1, 39 - 51, 29.05.2024
Ayşen Yağmur Burgazlı
,
Merve Güneş
,
Burcin Yalcin
,
Ghada Tagorti
,
Bülent Kaya
Project Number
FYL-2021-5714
References
- Singh, S.P. (2016). Nanotechnology: A Journey towards finding solutions. Journal of Materials Science Research, 5(1), 61-76.
- Kaur, R. and Kaur, K. (2024). Scope of Nanotechnology in Food Packaging. Advances in Sustainable Food Packaging Technology. Apple Academic Press. 135-160.
- Barik, T.K., Mandal, S.M., Mitra, S., Maity, G.C., Roymahapatra, G., and Santra, T.S. (2020). Prospect of nanotechnology: A brief review. Journal of Indiand Chemical Society, 97(11b), 2372-2384.
- Saleh, T.A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20(2020), 1-16.
- Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H., and Yang, S. (2010). Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials, 31(13), 3667-3673.
- Selim, M.M., El-Safty, S., Tounsi, A., and Shenashen, M. (2024). A review of magnetic nanoparticles used in nanomedicine. APL Materials, 12(1), 1-14.
- Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., and Farokhzad, O.C. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 83(5), 761-769.
- Shahri, M.M. (2020). Harnessing Nanoscale Surface Interactions. Magnetic Materials and Magnetic Nanocomposites for Biomedical Applications. Elsevier Inc. All. 77-95.
- Kettering, M., Zorn, H., Bremer-Streck, S., Oehring, H., Zeisberger, M., Bergemann, C., Hergt, R., Halbhuber, K.J., Kaiser, W.A., and Hilger, I. (2009). Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Physics in Medicine & Biology, 54(17), 5109-5121.
- Ghazanfari, M.R., Kashefi, M., Shams, S.F., and Jaafari, M.R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International, 2016, 1-32.
- Arias, L.S., Pessan, J.P., Vieria, A.P.M., Toito de Lima, T.M., Delbem, A.C.B., and Monteiro, D.R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel), 7(2), 1-32.
- Ansari, S.A.M.K., Ficiara, E., Ruffinatti, F.A., Stura, I., Argenziano, M., Abollino, O., Cavalli, R., Guiot, C., and D’Agata, F. (2019). Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel), 12(3), 1-24.
- Katz, E. (2019). Synthesis, properties and applications of magnetic nanoparticles and nanowires-A brief introduction. Magnetochemistry, 5(4), 1-15.
- Cattaneo, A.G., Gornati, R., Sabbioni, E., Chiriva-Internati, M., Cobos, E., Jenkins, M.R., and Bernardini, G. (2010). Nanotechnology and human health: risks and benefits. Journal of Applied Toxicology, 30(8), 730-744.
- Jiang, Z., Shan, K., Song, J., Liu, J., Rajendran, S., Pugazhendhi, A., Jacob, J.A., and Chen, B. (2019). Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sciences, 220, 156-161.
- Dandamudi, S. And Campbell, R.B. (2007). The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 28(31), 4673-4683.
- Lübbe, A.S., Bergemann, C., Brock, J., and McLure, D.G. (1999). Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials, 194(1-3), 149-155.
- Shen, L., Li, B., and Qiao, Y. (2018). Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 11(2), 324.
- Wang, Y., Lee, Y., Chou, C., Chang, Y., Liu, W., and Chu, H. (2024). Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. Environmental Pollution, 346(1).
- Mahmoud, A., Ezgi, Ö., Merve, A., and Özhan, G. (2016). In Vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. International Journal of Toxicology, 35(4), 429-437.
- Bhatt, I. and Tripathi, B.N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82(3), 308-317.
- Baker, T.J., Tyler, C.R., and Galloway, T.S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
- Kim, T., Kim, M., Park, H., Shin, U.S., Gong, M., and Kim, H. (2012). Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A, 100A(4), 1033-1043.
- Huang, Y., Wu, C., and Aronstam, R.S. (2010). Toxicity of Transition Metal Oxide Nanoparticles: Recent insights from in vitro studies. Materials (Basel), 3(10), 4842-4859.
- Carmona, E.R., Inostroza-Blancheteau, C., Obando, V., Rubio, L., and Marcos, R. (2015). Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 791, 1-11.
- Carmona, E.R., Inostroza-Blancheteau, C., Rubio, L., and Marcos, R. (2016). Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health, 32(12), 1987-2001.
- Jeon, Y., Park, S., and Lee, M. (2011). Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Animal Cells and Systems, 15(2), 107-114.
- Malhotra, N., Lee, J., Liman, R.A.D., Ruallo, J.M.S., Villaflores, O.B., Ger, T., and Hsiao, C. (2020). Potential toxicity of iron oxide magnetic nanoparticles: A Review. Molecules, 25(14), 1-26.
- Ong, C., Yung, L.L., Cai, Y., Bay, B., and Baeg, G. (2015). Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology, 9(3), 396-403.
- Vecchio, G., Galeone, A., Malvindi, M.A., Cingolani, R., and Pompa, P.P. (2013). Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster. Journal of Nanoparticle Research, 15, 1-7.
- Demir, E. (2020). An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: Toxicity, cellular uptake, oxidative stress, and DNA damage. Journal of Toxicology and Environmental Health, Part A, 83(11-12), 456-469.
- Ertuğrul, H., Yalçın, B., Güneş, M., and Kaya, B. (2020). Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug and Chemical Toxicology, 43(3), 279-286.
- Jacob, J.A., Salmani, J.M.M., and Chen, B. (2016). Magnetic nanoparticles: Mechanistic studies on the cancer cell interaction. Nanotechnology Reviews, 5(5), 481-488.
- Flagg, R.O. (1988). Carolina Drosophila Manual. Carolina Biological Supply Company, North Carolina.
- Lewis, E.B. (1960). A new standard food medium. Drosophila Information Service, 34, 118-119.
- Kurşun, A.Y., Yalçın, B., Güneş, M., Tagorti, G., and Kaya, B. (2021). MgO nanopartiküllerinin Drosophila melanogaster üzerindeki davranışsal toksisitesinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1283-1294.
- Güneş, M., Yalçın, B., Burgazlı, A.Y., Tagorti, G., Yavuz, E., Akarsu, E., Kaya, N., Marcos, R., and Kaya, B. (2023). Morphologically different hydroxyapatite nanoparticles exert differential genotoxic effects in Drosophila. Science of The Total Environment, 904, 1-15.
- Yalçın, B., Güneş, M., Kurşun, A.Y., Kaya, N., Marcos, R., and Kaya, B., (2022). Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology, 16(3), 393-407.
- Graf, U., Wurgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., and Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental mutagenesis, 6(2), 153-188.
- Marcos, R. and Carmona, E.R. (2013). The wing-spot and the comet tests as useful assays detecting genotoxicity in Drosophila. Methods in Molecular Biology, 1044, 417-427.
- Ucar, A., Arslan, M.E., Yeltekin, A.C., Ozgeris, F.B., Yıldırım, O.C., Parlak, V., Alak, G., Turkez, H., and Atamanalp, M. (2023). Neutralization of iron oxide magnetic nanoparticle aquatoxicity on Oncorhynchus mykiss via supplementation with ulexite. Drug and Chemical Toxicology, 5, 1-13.
- Hussain, S.M., Hess, K.L, Gearhart, J.M., Geiss, K.T., and Schlager, J.J. (2005). In vitro toxicity of nanoparticles BRL 3A rat liver cells. Toxicology In Vitro, 19(7), 975-983.
- Coccini, T., Caloni, F., Cando, L.J.R., and De Simone, U. (2017). Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. Journal of Applied Toxicology, 37(3), 361-373.
- Ahamed, M., Alhadlaq, H.A., Alam, J., Khan, M.A.M., Ali, D., and Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Current Pharmaceutical Design, 19(37), 6681-6690.
- Szalay, B., Tatrai, E., Nyiro, G., Vezer, T., and Dura, G. (2012). Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. Journal of Applied Toxicology, 32(6), 446-453.
- Zhang, Y., Wang, Z., Li, X., Wang, L., Yin, M., Wang, L., Chen, N., Fan, C., and Song, H. (2016). Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. Advanced Materials, 28(7), 1387-1393.
- Kakavoulia, M., Karakota, M., Kaloyianni, M., Halevas, E., Sagnou, M., Galliou, P.A., and Koliakos, G. (2022). The cytotoxicity effect of a bis-MPA-based dendron, a bis-MPA-PEG dendrimer and a magnetite nanoparticle on stimulated and non-stimulated human blood lymphocytes. Toxicology In Vitro, 82.
- Ahamed, M., Akhtar, M.J., Siddiqui, M.A., Ahmad, J., Musarrat, J., Al-Khedhairy, A.A., AlSalhi, M.S., and Alrokayan, S.A. (2011). Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 283(2-3), 101-108.
- Ahamed, M., Akhtar, M.J., Alhadlaq, H.A., Khan, M.A.M., and Alrokayan, S.A. (2015). Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MCF-7 cancer cells. Chemosphere, 135, 278-288.
- Yin, H., Too, H.P., and Chow, G.M. (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials, 26(29), 5818-5826.
- Nas, B. And Çolak, D.A. (2020). Genotoxic analysis of nickel-iron oxide in Drosophila. Toxicology and Industrial Health, 36(11), 835-843.
- Colognato, R., Bonelli, A., Bonacchi, D., Baldi, G., and Migliore, L. (2007). Analysis of cobalt ferrite nanoparticles induced genotoxicity on human peripheral lymphocytes: comparison of size and organic grafting dependent effects. Nanotoxicology, 1(4), 301-308.
- Marmorato, P., Ceccone, G., Gianoncelli, A., Pascolo, L., Ponti, J., Rossi, F., Salome, M., Kaulich, B., and Kiskinova, M. (2011). Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicology Letters, 207(2), 128-136.
- Aşık, E., Akpınar, Y., Güray, N.T., İşcan, M., Demircigil, G.Ç., and Volkan, M. (2016). Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicology Research, 5(6), 1649-1662.
- Abudayyak, M., Gurkaynak, T.A., and Özhan, G. (2017). In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicology and Industrial Health, 33(8), 646-654.
- Sousa, C.A., Soaresi H.M.V.M., and Soares, E.V. (2019). Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquatic Toxicology, 214, 1-10.
- Ghosh, I., Sadhu, A., Moriyasu, Y., Bandyopadhyay, M., and Mukherjee, A. (2019). Manganese oxide nanoparticles induce genotoxicity and DNA hypomethylation in the moss Physcomitrella patens. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 146-157.
- Singh, S.P., Kumari, M., Kumari, S.I., Rahman, M.F., Kamal, S.S.K., Mahboob, M., and Grover, P. (2013). Genotoxicity of nano- and micron-sized manganese oxide in rats after acute oral tretment. Mutation Research, 754(1-2), 39-50.
- Kurşun, A.Y. (2022). Drosophila melanogaster’de Demir Bazlı Metalik-Manyetik Nanopartiküllerin Etkilerinin Araştırılması. Yüksek Lisans Tezi. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü. Antalya. 81.