Research Article
BibTex RIS Cite
Year 2020, , 761 - 765, 01.09.2020
https://doi.org/10.35378/gujs.604784

Abstract

References

  • [1] H. Nakano, Ergodic theorems in semi-ordered linear spaces, Ann. Math. 49 (1948), 538-556.
  • [2] R. DeMarr, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., 8 (1964), 601--606.
  • [3] S. Kaplan, On unbounded order convergence, Real Anal. Exchange, 23 (1) (1998-99), 175-184.
  • [4] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl., 415 (2) (2014), 931--947.
  • [5] N. Gao, V. G. Troitsky, and F. Xanthos, Uo-convergence and its applications to cesáro means in banach lattices, Israel Journal of Math., 220 (2017), 649-689.
  • [6] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006.
  • [7] W. A. J. Luxemburg and A. C. Zaanen, Riesz Space I, North-Holland, Amsterdam, The Netherland, 1971.
  • [8] C. Çevik and I. Altun, Vector metric spaces and some properties, Topol. Methods Nonlinear Anal., 34 (2), (2009), 375--382.

Unbounded Vectorial Cauchy Completion of Vector Metric Spaces

Year 2020, , 761 - 765, 01.09.2020
https://doi.org/10.35378/gujs.604784

Abstract

A sequence (an) in a Riesz space E is called uo-convergent (or unbounded order convergent) to a in E if  inf{|an-a|,u} is order convergent to 0 for all u in E+ and
unbounded order Cauchy (uo-Cauchy) if 
|an-an+p|is
uo-convergent to 0. In the first part of this study we define ud,E
-convergence
(or unbounded vectorial convergence) in vector metric spaces, which is more
general than usual metric spaces, and examine relations between unbounded order
convergence, unbounded vectorial convergence, vectorial convergence and order
convergence. In the last part we construct the unbounded Cauchy completion of
vector metric spaces by the motivation of the fact that every metric space has
Cauchy completion. In this way, we have obtained a more general completion of
vector metric spaces.


References

  • [1] H. Nakano, Ergodic theorems in semi-ordered linear spaces, Ann. Math. 49 (1948), 538-556.
  • [2] R. DeMarr, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., 8 (1964), 601--606.
  • [3] S. Kaplan, On unbounded order convergence, Real Anal. Exchange, 23 (1) (1998-99), 175-184.
  • [4] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl., 415 (2) (2014), 931--947.
  • [5] N. Gao, V. G. Troitsky, and F. Xanthos, Uo-convergence and its applications to cesáro means in banach lattices, Israel Journal of Math., 220 (2017), 649-689.
  • [6] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006.
  • [7] W. A. J. Luxemburg and A. C. Zaanen, Riesz Space I, North-Holland, Amsterdam, The Netherland, 1971.
  • [8] C. Çevik and I. Altun, Vector metric spaces and some properties, Topol. Methods Nonlinear Anal., 34 (2), (2009), 375--382.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Çetin Cemal Özeken This is me 0000-0002-5916-0688

Cüneyt Çevik 0000-0001-9516-0100

Publication Date September 1, 2020
Published in Issue Year 2020

Cite

APA Özeken, Ç. C., & Çevik, C. (2020). Unbounded Vectorial Cauchy Completion of Vector Metric Spaces. Gazi University Journal of Science, 33(3), 761-765. https://doi.org/10.35378/gujs.604784
AMA Özeken ÇC, Çevik C. Unbounded Vectorial Cauchy Completion of Vector Metric Spaces. Gazi University Journal of Science. September 2020;33(3):761-765. doi:10.35378/gujs.604784
Chicago Özeken, Çetin Cemal, and Cüneyt Çevik. “Unbounded Vectorial Cauchy Completion of Vector Metric Spaces”. Gazi University Journal of Science 33, no. 3 (September 2020): 761-65. https://doi.org/10.35378/gujs.604784.
EndNote Özeken ÇC, Çevik C (September 1, 2020) Unbounded Vectorial Cauchy Completion of Vector Metric Spaces. Gazi University Journal of Science 33 3 761–765.
IEEE Ç. C. Özeken and C. Çevik, “Unbounded Vectorial Cauchy Completion of Vector Metric Spaces”, Gazi University Journal of Science, vol. 33, no. 3, pp. 761–765, 2020, doi: 10.35378/gujs.604784.
ISNAD Özeken, Çetin Cemal - Çevik, Cüneyt. “Unbounded Vectorial Cauchy Completion of Vector Metric Spaces”. Gazi University Journal of Science 33/3 (September 2020), 761-765. https://doi.org/10.35378/gujs.604784.
JAMA Özeken ÇC, Çevik C. Unbounded Vectorial Cauchy Completion of Vector Metric Spaces. Gazi University Journal of Science. 2020;33:761–765.
MLA Özeken, Çetin Cemal and Cüneyt Çevik. “Unbounded Vectorial Cauchy Completion of Vector Metric Spaces”. Gazi University Journal of Science, vol. 33, no. 3, 2020, pp. 761-5, doi:10.35378/gujs.604784.
Vancouver Özeken ÇC, Çevik C. Unbounded Vectorial Cauchy Completion of Vector Metric Spaces. Gazi University Journal of Science. 2020;33(3):761-5.

Cited By


Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.780729