Research Article
BibTex RIS Cite

Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases

Year 2020, , 646 - 660, 01.09.2020
https://doi.org/10.35378/gujs.654598

Abstract

In this work, the antioxidant activity of the higher amino acid Schiff bases, which were prepared as the monosodium salts (1a–3a) and the neutral forms (1b–3b) was determined by DPPH scavenging assay. In pure MeOH solution, the scavenging ability of Schiff bases 1a-3a were higher than 1b-3b, but lower than ascorbic acid. The activity followed the order 3 (a,b) > 2 (a,b) > 1 (a,b). On the other hand, Schiff bases 2a and 3a behaved as the most effective scavengers of the DPPH radical in methanol-water mixture (v:v, 1:3). And, they were found to be have lower SC50 values in this mixture compared to pure methanol. In vitro cytotoxicity of these Schiff bases was studied against human cervical cancer cells (HeLa), human breast adenocarcinoma cells (MCF-7), and human normal embryonic kidney cells (HEK293). For HeLa cell line, Schiff bases 1a-3a exhibited a litttle high activity than 1b, but very low activity than doxorubicin. Schiff bases 2b and 3b had no cytotoxicity against HeLa cell. For MCF-7 cell line, Schiff bases 1a, 3a, 1b and 3b nearly were inactive at 100 µM, whereas 2a increased cell proliferation in the all tested concentration range. Differently, Schiff base 2b showed the highest cytotoxicity and killed 90 percent of MCF-7 cells at concentration of 100 µM. For HEK-293, doxorubicin was strongly cytotoxic. Despite this, Schiff bases 1a, 3a and 3b were inactive, whereas the others showed little weak toxicity.

Supporting Institution

Gazi University

Project Number

F.E.F.05/2011-24

Thanks

We are thankful to Research Foundation of Gazi University for supporting this study with the project F.E.F.05/2011-24.

References

  • [1] Ikram, M., Rehman, S., Khan, A., Baker, R.J., Hofer, T.S., Subhan, F., Qayum, M., Faridoon, Schulzke C., "Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand", Inorganica Chimica Acta, 428: 117‒126, (2015).
  • [2] Blois, M. S., "Antioxidant determination by the use of a free radical", Nature, 181: 1199‒1200, (1958).
  • [3] Beena, Kumar, D., Rawat, D. S., "Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases", Bioorganic and Medicinal Chemistry Letters, 23: 641‒645, (2013).
  • [4] Pillai, R. R., Karrouchi, K., Fettach, S., Armakovic, S., Armakovic, S. J., Brik, Y., Taoufik, J., Radi, S., My Faouzi, E. A., Ansar, M., "Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings", Journal of Molecular Structure, 1177: 47‒54, (2019).
  • [5] Cantuti-Castelvetri, I., Shukitt-Hale, B., Joseph, J. A., "Neurobehavioral aspects of antioxidants in aging", International Journal of Development Neuroscience, 18: 367‒381, (2000).
  • [6] Amarowicz, R., Peggb, R. B., Rahimi-Moghaddam, P., Barld, B., Weil, J. A., "Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies", Food Chemistry, 84: 551‒562, (2004).
  • [7] Menteşe, E., Yılmaz, F., Baltaş, N., Bekircan, O., Kahveci, B., "Synthesis and antioxidant activities of some new triheterocyclic compounds containing benzimidazole, thiophene, and 1,2,4-triazole rings", Journal of Enzym Inhibition and Medicinal Chemistry Early Online, 1‒7, (2014).
  • [8] Shanty, A. A., Mohanan, P. V., "Heterocyclic Schiff bases as nontoxic antioxidants: Solvent effect, structure activity relationship and mechanism of action", Spectrochimica Acta A, 192: 181‒187, (2018).
  • [9] Rakesh, K. P., Kumara, H. K., Manukumar, H. M., Gowda, D. C., "Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking", Bioorganic Chemistry, 87: 252‒264, (2019).
  • [10] Chacko, S., Samanta, S., "A novel approach towards design, synthesis and evaluation of some Schiff base analogues of 2-aminopyridine and 2-aminobezothiazole against hepatocellular carcinoma", Biomedicine Pharmacotherapy, 89: 162‒176, (2017).
  • [11] Shahraki, S., Delarami, H. S., Saeidifar, M., "Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies", Journal of Molecular Liquid, 287: 111003, (2019).
  • [12] Ferri, N., Cazzaniga, S., Mazzarella, L., Curigliano, G., Lucchini, G., Zerla, D., Gandolfi, R., Facchetti, G., Pellizzoni, M., Rimoldi, I., "Cytotoxic effect of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in PtII complexes on human carcinoma cell lines: A comparative study with cisplatin", Bioorganic and Medicinal Chemistry, 21: 2379‒2386, (2013).
  • [13] Ott, I., Gust, R., "Non Platinum Metal Complexes as Anti-cancer Drugs", Archiv der Pharmazie- Chemistry Life Sciences, 340: 117‒126, (2007).
  • [14] Kaldır, H. M., Tatlı, E., Turgut, B., Vural, Ö., "Doksorubisin’e Bağlı Kardiyotoksisite", Turkiye Klinikleri Journal of Cardiology, 15: 416‒421, (2002).
  • [15] Jin, V. X., Ranford, J. D., "Complexes of platinum(II) or palladium(II) with 1,10-phenanthroline and amino acids", Inorganica Chimica Acta, 304: 38‒44, (2000).
  • [16] Bakalova, A., Varbanov, H., Buyukliev, R., Stanchev, S., Momekov, G., Ivanov, D., "Novel Pt(II) and Pt(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione. Synthesis, physicochemical, chemometric and pharmacological investigation", Inorganica Chimica Acta, 363: 1568‒1576 (2010).
  • [17] Shahraki, S., Majd, M. H., Heydari, A., "Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach", Journal of Molecular Structure, 1177: 536‒544, (2019).
  • [18] Özdemir (nee Güngör), Ö., Gürkan, P., Sarı, M., Tunç, T., "Synthesis of monosodium salts of N-(5-nitro-salicylidene)-D-amino acid Schiff bases and their iron(III) complexes: spectral and physical characterizations, antioxidant activities", Journal of Coordination Chemistry, 68: 2565‒2585, (2015).
  • [19] Wang, H., Yuan, H., Li, S., Li, Z., Jiang, M., "Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids", Bioorganic and Medicinal Chemistry Letters, 26: 809‒813, (2016).
  • [20] Ganguly, R., Sreenivasulu, B., Vittal, J., "Amino acid-containing reduced Schiff bases as the building blocks for metallasupramolecular structures", Coordination Chemistry Reviews, 252: 1027‒1050, (2008).
  • [21] Soares, S. M., Lemos, S. S., Sales, M. J. A., Burrow, R. A., "On the nuclearity of tricarbonyl rhenium(I) complexes with N,O,O-donating Schiff bases derived from amino acids", Journal of Organometallic Chemistry, 750: 80‒85, (2014).
  • [22] Sevgi, F., Bagkesici, U., Kursunlu, A. N., Guler, E., "Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity", Journal of Molecular Structure, 1154: 256‒260, (2018).
  • [23] Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M., "DNA binding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid Schiff bases", Arabian Journal of Chemistry, 10: 1835‒1846, (2017).
  • [24] Gupta, R., Mathur, M., Kumar Swami, A., Sharma, J., Singh, Y., "Synthesis and pharmacological activity of diorganoantimony(III) and triorganoantimony(V) derivatives of Schiff bases derived from amino acids", Journal of Saudi Chemical Society, 21: 67‒75, (2017).
  • [25] Zhou, Y., Zhao, M., Wu, Y., Li, C., Wu, J., Zheng, M., Peng, L., Peng, S., "A class of novel Schiff’s bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis", Bioorganic and Medicinal Chemistry, 18: 2165‒2172, (2010).
  • [26] Zheng, J., Ma, L., "Silver(I) complexes of 2,4-dihydroxybenzaldehyde–amino acid Schiff bases: Novel noncompetitive α-glucosidase inhibitors", Bioorganic and Medicinal Chemistry Letters, 25: 2156‒2161, (2015).
  • [27] Wang, R. M., Mao, J. J., Song, J. F., Huo, C. X., He, Y. F., "Antioxidant activity of bovine serum albümin binding amino acid Schiff-bases metal complexes", Chinese Chemical Letters, 18: 1416‒1418, (2007).
  • [28] Li, L-J., Fu, B., Qiao, Y., Wang, C., Huang, Y-Y., Liu, C-C., Tian, C., Du, J-L., "Synthesis, characterization and cytotoxicity studies of platinum(II) complexes with reduced amino acid ester Schiff-bases as ligands", Inorganica Chimica Acta, 419: 135‒140, (2014).
  • [29] Alsalme, A., Laeeq, S., Dwivedi, S., Khan, M. S., Al Farhan, K., Musarrat, J., Khan, R. A., "Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation", Spectrochimica Acta A, 163: 1‒7, (2016).
  • [30] Muche, S., Harms, K., Biernasiuk, A., Malm, A., Popiolek, L., Hordyjewska, A., Olszewska, A., Holynska, M., "New Pd(II) schiff base complexes derived from ortho-vanillin and L-tyrosine or L-glutamic acid: Synthesis, characterization, crystal structures and biological properties", Polyhedron, 151: 465‒477, (2018).
  • [31] Sallam, S. A., Orabi, A. S., Abbas, A. M., "DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases", Journal of Molecular Structure, 1006: 272‒281, (2011).
  • [32] Shahraki, S., Shiri, F., Saeidifar, M., "Evaluation of in silico ADMET analysis and human serum albumin interactions of a new lanthanum(III) complex by spectroscopic and molecular modeling studies", Inorganica Chimica Acta, 463: 80‒87, (2017).
  • [33] Mahmood, S., Malik, M. A., Motevalli, M., Nunn, P. B., Q’Brien, P., "Synthesis and X-ray crystal structures of Schiff bases prepared from salicylaldehyde and the diamino acids L-2-amino-3-methylaminopropanoic acid, DL-2,4-diamino-butanoic acid and DL-2,3-diaminopropanoic acid", Tetrahedron, 54: 5721‒5730, (1998).
  • [34] Yang, C. T., Vittal, J. J., "Synthesis and structural behavior of ternary copper(II) complexes containing reduced Schiff base N-(2-hydroxybenzyl)-4-aminobutyric acid and 1,10-phenanthroline", Inorganica Chimica Acta, 344: 65‒76, (2003).
  • [35] Puterova, Z., Valentova, J., Bojkova, Z., Kozisek, J., Devinsky, F., "Synthesis, crystal structure and antiradical effect of copper(II) Schiff base complexes containing five-, six- and unusual seven-membered rings", Dalton Transactions, 40: 1484‒1490, (2011).
  • [36] Güngör, Ö., Gürkan, P., "Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms", Journal of Molecular Structure, 1074: 62‒70, (2014).
  • [37] Özdemir, Ö., "Studies on phenol-keto tautomerism, metal ion binding, and free radical scavenging properties of newly synthesized naphthalene-based tetraimine", Journal of BAUN Institute of Science and Technology, 20: 109‒123, (2018).
  • [38] Özdemir, A., Şimay, Y. D., İbişoğlu, B., Yaren, B., Bülbül, D., Ark, M. "Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines", Steroids, 109: 29‒43, (2016).
  • [39] Zhang, Y., Fang, Y., Liang, H., Wang, H., Hu, K., Liu, X., Yi, X., Peng, Y., "Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives", Bioorganic and Medicinal Chemistry Letters, 23: 107‒111, (2013).
  • [40] Porter, W. L., in Antioxidants: Chemical, Physiological, Nutritional and Toxicological Aspects, (Ed. G.M. Williams), 1993, pp. 93–122 (Princeton: Princeton Scientific).
  • [41] Nenadis, N., Wang, L-F., Tsimidou, M., Zhang, H-Y., "Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS.+ Assay", Journal of Agricultural and Food Chemistry, 52: 4669‒4674, (2004).
  • [42] Sharma, O. P., Bhat, T. K., "DPPH antioxidant assay revisited", Food Chemistry, 113: 1202‒1205, (2009).
  • [43] Sathiyaraj, S., Sampath, K., Butcher, R. J., Pallepogu, R., Jayabalakrishnan, C., "Designing, structural elucidation, comparison of DNA binding, cleavage, radical scavenging activity and anticancer activity of copper(I) complex with 5-dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1,2-dihydro-pyrazol-3-one Schiff base ligand", European Journal of Medicinal Chemistry, 64: 81‒89, (2013).
  • [44] Brand-Williams, W., Cuvelier, M. E., Berset, C., "Use of a free radical method to evaluate antioxidant activity", Lebensmittel-Wissenschaft und Technologie, 28: 25‒30, (1995).
  • [45] Thalamuthu, S., Annaraj, B., Neelakantan, M. A., "A systematic investigation on biological activities of a novel double zwitterionic Schiff base Cu(II) complex", Spectrochimica Acta A, 118: 120‒129, (2014).
  • [46] Ratha, P., Chitra, L., Ancy, I., Kumaradhas, P., Palvannan, T., "New amino acid-Schiff base derived from s-allyl cysteine and methionine alleviates carbon tetrachloride-induced liver dysfunction", Biochimie, 138: 70‒81, (2017).
  • [47] Adam, M. S. S., Elsawy, H., "Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction", Journal of Photochemistry and Photobiology B, 184: 34‒43, (2018).
Year 2020, , 646 - 660, 01.09.2020
https://doi.org/10.35378/gujs.654598

Abstract

Project Number

F.E.F.05/2011-24

References

  • [1] Ikram, M., Rehman, S., Khan, A., Baker, R.J., Hofer, T.S., Subhan, F., Qayum, M., Faridoon, Schulzke C., "Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand", Inorganica Chimica Acta, 428: 117‒126, (2015).
  • [2] Blois, M. S., "Antioxidant determination by the use of a free radical", Nature, 181: 1199‒1200, (1958).
  • [3] Beena, Kumar, D., Rawat, D. S., "Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases", Bioorganic and Medicinal Chemistry Letters, 23: 641‒645, (2013).
  • [4] Pillai, R. R., Karrouchi, K., Fettach, S., Armakovic, S., Armakovic, S. J., Brik, Y., Taoufik, J., Radi, S., My Faouzi, E. A., Ansar, M., "Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings", Journal of Molecular Structure, 1177: 47‒54, (2019).
  • [5] Cantuti-Castelvetri, I., Shukitt-Hale, B., Joseph, J. A., "Neurobehavioral aspects of antioxidants in aging", International Journal of Development Neuroscience, 18: 367‒381, (2000).
  • [6] Amarowicz, R., Peggb, R. B., Rahimi-Moghaddam, P., Barld, B., Weil, J. A., "Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies", Food Chemistry, 84: 551‒562, (2004).
  • [7] Menteşe, E., Yılmaz, F., Baltaş, N., Bekircan, O., Kahveci, B., "Synthesis and antioxidant activities of some new triheterocyclic compounds containing benzimidazole, thiophene, and 1,2,4-triazole rings", Journal of Enzym Inhibition and Medicinal Chemistry Early Online, 1‒7, (2014).
  • [8] Shanty, A. A., Mohanan, P. V., "Heterocyclic Schiff bases as nontoxic antioxidants: Solvent effect, structure activity relationship and mechanism of action", Spectrochimica Acta A, 192: 181‒187, (2018).
  • [9] Rakesh, K. P., Kumara, H. K., Manukumar, H. M., Gowda, D. C., "Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking", Bioorganic Chemistry, 87: 252‒264, (2019).
  • [10] Chacko, S., Samanta, S., "A novel approach towards design, synthesis and evaluation of some Schiff base analogues of 2-aminopyridine and 2-aminobezothiazole against hepatocellular carcinoma", Biomedicine Pharmacotherapy, 89: 162‒176, (2017).
  • [11] Shahraki, S., Delarami, H. S., Saeidifar, M., "Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies", Journal of Molecular Liquid, 287: 111003, (2019).
  • [12] Ferri, N., Cazzaniga, S., Mazzarella, L., Curigliano, G., Lucchini, G., Zerla, D., Gandolfi, R., Facchetti, G., Pellizzoni, M., Rimoldi, I., "Cytotoxic effect of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in PtII complexes on human carcinoma cell lines: A comparative study with cisplatin", Bioorganic and Medicinal Chemistry, 21: 2379‒2386, (2013).
  • [13] Ott, I., Gust, R., "Non Platinum Metal Complexes as Anti-cancer Drugs", Archiv der Pharmazie- Chemistry Life Sciences, 340: 117‒126, (2007).
  • [14] Kaldır, H. M., Tatlı, E., Turgut, B., Vural, Ö., "Doksorubisin’e Bağlı Kardiyotoksisite", Turkiye Klinikleri Journal of Cardiology, 15: 416‒421, (2002).
  • [15] Jin, V. X., Ranford, J. D., "Complexes of platinum(II) or palladium(II) with 1,10-phenanthroline and amino acids", Inorganica Chimica Acta, 304: 38‒44, (2000).
  • [16] Bakalova, A., Varbanov, H., Buyukliev, R., Stanchev, S., Momekov, G., Ivanov, D., "Novel Pt(II) and Pt(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione. Synthesis, physicochemical, chemometric and pharmacological investigation", Inorganica Chimica Acta, 363: 1568‒1576 (2010).
  • [17] Shahraki, S., Majd, M. H., Heydari, A., "Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach", Journal of Molecular Structure, 1177: 536‒544, (2019).
  • [18] Özdemir (nee Güngör), Ö., Gürkan, P., Sarı, M., Tunç, T., "Synthesis of monosodium salts of N-(5-nitro-salicylidene)-D-amino acid Schiff bases and their iron(III) complexes: spectral and physical characterizations, antioxidant activities", Journal of Coordination Chemistry, 68: 2565‒2585, (2015).
  • [19] Wang, H., Yuan, H., Li, S., Li, Z., Jiang, M., "Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids", Bioorganic and Medicinal Chemistry Letters, 26: 809‒813, (2016).
  • [20] Ganguly, R., Sreenivasulu, B., Vittal, J., "Amino acid-containing reduced Schiff bases as the building blocks for metallasupramolecular structures", Coordination Chemistry Reviews, 252: 1027‒1050, (2008).
  • [21] Soares, S. M., Lemos, S. S., Sales, M. J. A., Burrow, R. A., "On the nuclearity of tricarbonyl rhenium(I) complexes with N,O,O-donating Schiff bases derived from amino acids", Journal of Organometallic Chemistry, 750: 80‒85, (2014).
  • [22] Sevgi, F., Bagkesici, U., Kursunlu, A. N., Guler, E., "Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity", Journal of Molecular Structure, 1154: 256‒260, (2018).
  • [23] Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M., "DNA binding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid Schiff bases", Arabian Journal of Chemistry, 10: 1835‒1846, (2017).
  • [24] Gupta, R., Mathur, M., Kumar Swami, A., Sharma, J., Singh, Y., "Synthesis and pharmacological activity of diorganoantimony(III) and triorganoantimony(V) derivatives of Schiff bases derived from amino acids", Journal of Saudi Chemical Society, 21: 67‒75, (2017).
  • [25] Zhou, Y., Zhao, M., Wu, Y., Li, C., Wu, J., Zheng, M., Peng, L., Peng, S., "A class of novel Schiff’s bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis", Bioorganic and Medicinal Chemistry, 18: 2165‒2172, (2010).
  • [26] Zheng, J., Ma, L., "Silver(I) complexes of 2,4-dihydroxybenzaldehyde–amino acid Schiff bases: Novel noncompetitive α-glucosidase inhibitors", Bioorganic and Medicinal Chemistry Letters, 25: 2156‒2161, (2015).
  • [27] Wang, R. M., Mao, J. J., Song, J. F., Huo, C. X., He, Y. F., "Antioxidant activity of bovine serum albümin binding amino acid Schiff-bases metal complexes", Chinese Chemical Letters, 18: 1416‒1418, (2007).
  • [28] Li, L-J., Fu, B., Qiao, Y., Wang, C., Huang, Y-Y., Liu, C-C., Tian, C., Du, J-L., "Synthesis, characterization and cytotoxicity studies of platinum(II) complexes with reduced amino acid ester Schiff-bases as ligands", Inorganica Chimica Acta, 419: 135‒140, (2014).
  • [29] Alsalme, A., Laeeq, S., Dwivedi, S., Khan, M. S., Al Farhan, K., Musarrat, J., Khan, R. A., "Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation", Spectrochimica Acta A, 163: 1‒7, (2016).
  • [30] Muche, S., Harms, K., Biernasiuk, A., Malm, A., Popiolek, L., Hordyjewska, A., Olszewska, A., Holynska, M., "New Pd(II) schiff base complexes derived from ortho-vanillin and L-tyrosine or L-glutamic acid: Synthesis, characterization, crystal structures and biological properties", Polyhedron, 151: 465‒477, (2018).
  • [31] Sallam, S. A., Orabi, A. S., Abbas, A. M., "DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases", Journal of Molecular Structure, 1006: 272‒281, (2011).
  • [32] Shahraki, S., Shiri, F., Saeidifar, M., "Evaluation of in silico ADMET analysis and human serum albumin interactions of a new lanthanum(III) complex by spectroscopic and molecular modeling studies", Inorganica Chimica Acta, 463: 80‒87, (2017).
  • [33] Mahmood, S., Malik, M. A., Motevalli, M., Nunn, P. B., Q’Brien, P., "Synthesis and X-ray crystal structures of Schiff bases prepared from salicylaldehyde and the diamino acids L-2-amino-3-methylaminopropanoic acid, DL-2,4-diamino-butanoic acid and DL-2,3-diaminopropanoic acid", Tetrahedron, 54: 5721‒5730, (1998).
  • [34] Yang, C. T., Vittal, J. J., "Synthesis and structural behavior of ternary copper(II) complexes containing reduced Schiff base N-(2-hydroxybenzyl)-4-aminobutyric acid and 1,10-phenanthroline", Inorganica Chimica Acta, 344: 65‒76, (2003).
  • [35] Puterova, Z., Valentova, J., Bojkova, Z., Kozisek, J., Devinsky, F., "Synthesis, crystal structure and antiradical effect of copper(II) Schiff base complexes containing five-, six- and unusual seven-membered rings", Dalton Transactions, 40: 1484‒1490, (2011).
  • [36] Güngör, Ö., Gürkan, P., "Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms", Journal of Molecular Structure, 1074: 62‒70, (2014).
  • [37] Özdemir, Ö., "Studies on phenol-keto tautomerism, metal ion binding, and free radical scavenging properties of newly synthesized naphthalene-based tetraimine", Journal of BAUN Institute of Science and Technology, 20: 109‒123, (2018).
  • [38] Özdemir, A., Şimay, Y. D., İbişoğlu, B., Yaren, B., Bülbül, D., Ark, M. "Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines", Steroids, 109: 29‒43, (2016).
  • [39] Zhang, Y., Fang, Y., Liang, H., Wang, H., Hu, K., Liu, X., Yi, X., Peng, Y., "Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives", Bioorganic and Medicinal Chemistry Letters, 23: 107‒111, (2013).
  • [40] Porter, W. L., in Antioxidants: Chemical, Physiological, Nutritional and Toxicological Aspects, (Ed. G.M. Williams), 1993, pp. 93–122 (Princeton: Princeton Scientific).
  • [41] Nenadis, N., Wang, L-F., Tsimidou, M., Zhang, H-Y., "Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS.+ Assay", Journal of Agricultural and Food Chemistry, 52: 4669‒4674, (2004).
  • [42] Sharma, O. P., Bhat, T. K., "DPPH antioxidant assay revisited", Food Chemistry, 113: 1202‒1205, (2009).
  • [43] Sathiyaraj, S., Sampath, K., Butcher, R. J., Pallepogu, R., Jayabalakrishnan, C., "Designing, structural elucidation, comparison of DNA binding, cleavage, radical scavenging activity and anticancer activity of copper(I) complex with 5-dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1,2-dihydro-pyrazol-3-one Schiff base ligand", European Journal of Medicinal Chemistry, 64: 81‒89, (2013).
  • [44] Brand-Williams, W., Cuvelier, M. E., Berset, C., "Use of a free radical method to evaluate antioxidant activity", Lebensmittel-Wissenschaft und Technologie, 28: 25‒30, (1995).
  • [45] Thalamuthu, S., Annaraj, B., Neelakantan, M. A., "A systematic investigation on biological activities of a novel double zwitterionic Schiff base Cu(II) complex", Spectrochimica Acta A, 118: 120‒129, (2014).
  • [46] Ratha, P., Chitra, L., Ancy, I., Kumaradhas, P., Palvannan, T., "New amino acid-Schiff base derived from s-allyl cysteine and methionine alleviates carbon tetrachloride-induced liver dysfunction", Biochimie, 138: 70‒81, (2017).
  • [47] Adam, M. S. S., Elsawy, H., "Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction", Journal of Photochemistry and Photobiology B, 184: 34‒43, (2018).
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Özlem Özdemir 0000-0003-2748-9179

Perihan Gürkan 0000-0002-0625-2482

Yaprak Dilber Şimay Demir 0000-0002-8248-0268

Mustafa Ark 0000-0003-2707-5531

Project Number F.E.F.05/2011-24
Publication Date September 1, 2020
Published in Issue Year 2020

Cite

APA Özdemir, Ö., Gürkan, P., Şimay Demir, Y. D., Ark, M. (2020). Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases. Gazi University Journal of Science, 33(3), 646-660. https://doi.org/10.35378/gujs.654598
AMA Özdemir Ö, Gürkan P, Şimay Demir YD, Ark M. Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases. Gazi University Journal of Science. September 2020;33(3):646-660. doi:10.35378/gujs.654598
Chicago Özdemir, Özlem, Perihan Gürkan, Yaprak Dilber Şimay Demir, and Mustafa Ark. “Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases”. Gazi University Journal of Science 33, no. 3 (September 2020): 646-60. https://doi.org/10.35378/gujs.654598.
EndNote Özdemir Ö, Gürkan P, Şimay Demir YD, Ark M (September 1, 2020) Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases. Gazi University Journal of Science 33 3 646–660.
IEEE Ö. Özdemir, P. Gürkan, Y. D. Şimay Demir, and M. Ark, “Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases”, Gazi University Journal of Science, vol. 33, no. 3, pp. 646–660, 2020, doi: 10.35378/gujs.654598.
ISNAD Özdemir, Özlem et al. “Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases”. Gazi University Journal of Science 33/3 (September 2020), 646-660. https://doi.org/10.35378/gujs.654598.
JAMA Özdemir Ö, Gürkan P, Şimay Demir YD, Ark M. Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases. Gazi University Journal of Science. 2020;33:646–660.
MLA Özdemir, Özlem et al. “Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases”. Gazi University Journal of Science, vol. 33, no. 3, 2020, pp. 646-60, doi:10.35378/gujs.654598.
Vancouver Özdemir Ö, Gürkan P, Şimay Demir YD, Ark M. Antioxidant and Cytotoxic Activity Studies in Series of Higher Amino Acid Schiff Bases. Gazi University Journal of Science. 2020;33(3):646-60.