Research Article
BibTex RIS Cite

The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air

Year 2022, , 1140 - 1150, 01.09.2022
https://doi.org/10.35378/gujs.885345

Abstract

Research on corona plasma discharges from plasma reactors has been carried out using the Point and Semicircular-Plane (PSC-P) electrode configuration in the air. The purpose of this study is to compare the suitability level of the current-voltage (I-V) characteristics curve from the results of experimental data and numerical simulation calculations of the electrode geometry function based on the variation of three electrode configuration sizes (small plate, medium plate, and large plate) and two variations of the distance between the two electrodes in each electrode configuration size. The results of the study prove that there is a high degree of conformity between numerical calculations with experimental data through calculations from the Python GUI Programming by taking a fitting value from the certain k-shape sharpness factor. The calculation location of the k-shape sharpness factor lies on the electrode tip sharp surface which will produce the largest plasma flow in the plasma reactor equipment.

Supporting Institution

non-tax revenue (PNBP), Diponegoro University

Project Number

1983/UN7.5.8/PP/2020

References

  • [1] Allen, J., “The plasma-sheath boundary: Its history and Langmuir's definition of the sheath edge”, Plasma Sources Science and Technology, 18(1): 014004, (2008).
  • [2] Stambouli, A. B., Benallal, R., Oudini, N., Mesli, S. M., Tadjine, R., “Control of Dual Frequency Capacitively Coupled Plasma via blocking capacitor and phase angle”, The European Physical Journal Applied Physics, 80 (1): 10802 (2017).
  • [3] Saikia, P., Bhuyan, H., Escalona, M., Favre, M., Wyndham, E., Maze, J., Schulze, J., “Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment”, Plasma Sources Science and Technology, 27(1): 015014, (2018).
  • [4] van Veldhuizen, E. M., Rutgers, W. R., “Corona Discharges: Fundamental and Diagnostics”, Frontiers in low temperature plasma diagnostics IV: papers, Rolduc Conference Centre, The Netherlands, 40-49, (2001).
  • [5] Dau, V. T., Dinh, T. X., Terebessy, T., Bui, T. T., “Bipolar corona discharge based air flow generation with low net charge”, Journal of Electrostatics, A, 244: 146 – 155, (2016).
  • [6] Guan, Y., Vaddi, R. S., Aliseda, A., Novosselov, I., “Analytical model of electro-hydrodynamic flow in corona discharge”, Physics of Plasmas, 25(8): 083507, (2018).
  • [7] Robinson, M., “Convective Heat Transfer at The Surface of A Corona Electrode”, International Journal of Heat and Mass Transfer, 13: 263-274, (1970).
  • [8] Robinson, M., “Movement of air in the electric wind of the corona discharge”, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 80: 143–150, (1961).
  • [9] Robinson, M., “A History of the Electric Wind”, American Journal of Physics, 30: 366-372, (1962).
  • [10] Robinson, M., “Turbulent Gas Flow and Electrostatic Precipitation”, Journal of the Air Pollution Control Association, 18(4): 235-239, (1968).
  • [11] Bush, J.R., Feldman, P.L., Robinson, M., “High Temperature, High Pressure Electrostatic Precipitation”, Journal of the Air Pollution Control Association, 29(4): 365-371, (1979).
  • [12] Townsend, J. S., "The potentials requires to maintain currents between coaxial cylinders", Philosophical Magazine (London), 28: 83-90, (1914).
  • [13] Dobranszky, J., Bernath, A., Marton, H., “Characterisation of the plasma shape of the TIG welding arc”, International Journal of Microstructure and Materials Properties, 3(1): 126-140, (2008).
  • [14] Ferreira, G. F. L., Oliveira Jr., O. N., Giacometti, J. A., “Point‐to‐plane corona: Current‐voltage characteristics for positive and negative polarity with evidence of an electronic component”, Journal of Applied Physics, 59: 3045, (1986).
  • [15] Zheng, Y., Zhang, B., He, J., “Current-voltage characteristics of dc corona discharges in air between coaxial cylinders”, Physics of Plasmas, 22: 023501, (2015).
  • [16] Robinson, M., “The Corona Threshold for Coaxial Cylinders in Air at High Pressures”, IEEE Transactions on Power Apparatus and Systems, Pas-86: 2, (1967).
  • [17] Goulden, C. H. “Methods of statistical analysis”, USA: John Wiley & Sons, (1949).
  • [18] Taylor, J. “Introduction to error analysis, the study of uncertainties in physical measurements”, second edition, California: University Science Books, (1997).
Year 2022, , 1140 - 1150, 01.09.2022
https://doi.org/10.35378/gujs.885345

Abstract

Project Number

1983/UN7.5.8/PP/2020

References

  • [1] Allen, J., “The plasma-sheath boundary: Its history and Langmuir's definition of the sheath edge”, Plasma Sources Science and Technology, 18(1): 014004, (2008).
  • [2] Stambouli, A. B., Benallal, R., Oudini, N., Mesli, S. M., Tadjine, R., “Control of Dual Frequency Capacitively Coupled Plasma via blocking capacitor and phase angle”, The European Physical Journal Applied Physics, 80 (1): 10802 (2017).
  • [3] Saikia, P., Bhuyan, H., Escalona, M., Favre, M., Wyndham, E., Maze, J., Schulze, J., “Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment”, Plasma Sources Science and Technology, 27(1): 015014, (2018).
  • [4] van Veldhuizen, E. M., Rutgers, W. R., “Corona Discharges: Fundamental and Diagnostics”, Frontiers in low temperature plasma diagnostics IV: papers, Rolduc Conference Centre, The Netherlands, 40-49, (2001).
  • [5] Dau, V. T., Dinh, T. X., Terebessy, T., Bui, T. T., “Bipolar corona discharge based air flow generation with low net charge”, Journal of Electrostatics, A, 244: 146 – 155, (2016).
  • [6] Guan, Y., Vaddi, R. S., Aliseda, A., Novosselov, I., “Analytical model of electro-hydrodynamic flow in corona discharge”, Physics of Plasmas, 25(8): 083507, (2018).
  • [7] Robinson, M., “Convective Heat Transfer at The Surface of A Corona Electrode”, International Journal of Heat and Mass Transfer, 13: 263-274, (1970).
  • [8] Robinson, M., “Movement of air in the electric wind of the corona discharge”, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 80: 143–150, (1961).
  • [9] Robinson, M., “A History of the Electric Wind”, American Journal of Physics, 30: 366-372, (1962).
  • [10] Robinson, M., “Turbulent Gas Flow and Electrostatic Precipitation”, Journal of the Air Pollution Control Association, 18(4): 235-239, (1968).
  • [11] Bush, J.R., Feldman, P.L., Robinson, M., “High Temperature, High Pressure Electrostatic Precipitation”, Journal of the Air Pollution Control Association, 29(4): 365-371, (1979).
  • [12] Townsend, J. S., "The potentials requires to maintain currents between coaxial cylinders", Philosophical Magazine (London), 28: 83-90, (1914).
  • [13] Dobranszky, J., Bernath, A., Marton, H., “Characterisation of the plasma shape of the TIG welding arc”, International Journal of Microstructure and Materials Properties, 3(1): 126-140, (2008).
  • [14] Ferreira, G. F. L., Oliveira Jr., O. N., Giacometti, J. A., “Point‐to‐plane corona: Current‐voltage characteristics for positive and negative polarity with evidence of an electronic component”, Journal of Applied Physics, 59: 3045, (1986).
  • [15] Zheng, Y., Zhang, B., He, J., “Current-voltage characteristics of dc corona discharges in air between coaxial cylinders”, Physics of Plasmas, 22: 023501, (2015).
  • [16] Robinson, M., “The Corona Threshold for Coaxial Cylinders in Air at High Pressures”, IEEE Transactions on Power Apparatus and Systems, Pas-86: 2, (1967).
  • [17] Goulden, C. H. “Methods of statistical analysis”, USA: John Wiley & Sons, (1949).
  • [18] Taylor, J. “Introduction to error analysis, the study of uncertainties in physical measurements”, second edition, California: University Science Books, (1997).
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Asep Yoyo Wardaya 0000-0003-2596-9670

Zaenul Muhlisin 0000-0003-1442-101X

Jatmiko Endro Suseno 0000-0003-2218-2995

Muhammad Nur 0000-0002-1173-0901

Pandji Triadyaksa 0000-0001-7536-3592

Ali Khumaeni 0000-0002-6907-7693

Eko Sarwoko 0000-0001-8876-9487

Jaka Windarta 0000-0003-1042-5064

Susilo Hadi 0000-0003-2635-343X

Project Number 1983/UN7.5.8/PP/2020
Publication Date September 1, 2022
Published in Issue Year 2022

Cite

APA Wardaya, A. Y., Muhlisin, Z., Suseno, J. E., Nur, M., et al. (2022). The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air. Gazi University Journal of Science, 35(3), 1140-1150. https://doi.org/10.35378/gujs.885345
AMA Wardaya AY, Muhlisin Z, Suseno JE, Nur M, Triadyaksa P, Khumaeni A, Sarwoko E, Windarta J, Hadi S. The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air. Gazi University Journal of Science. September 2022;35(3):1140-1150. doi:10.35378/gujs.885345
Chicago Wardaya, Asep Yoyo, Zaenul Muhlisin, Jatmiko Endro Suseno, Muhammad Nur, Pandji Triadyaksa, Ali Khumaeni, Eko Sarwoko, Jaka Windarta, and Susilo Hadi. “The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air”. Gazi University Journal of Science 35, no. 3 (September 2022): 1140-50. https://doi.org/10.35378/gujs.885345.
EndNote Wardaya AY, Muhlisin Z, Suseno JE, Nur M, Triadyaksa P, Khumaeni A, Sarwoko E, Windarta J, Hadi S (September 1, 2022) The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air. Gazi University Journal of Science 35 3 1140–1150.
IEEE A. Y. Wardaya, Z. Muhlisin, J. E. Suseno, M. Nur, P. Triadyaksa, A. Khumaeni, E. Sarwoko, J. Windarta, and S. Hadi, “The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air”, Gazi University Journal of Science, vol. 35, no. 3, pp. 1140–1150, 2022, doi: 10.35378/gujs.885345.
ISNAD Wardaya, Asep Yoyo et al. “The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air”. Gazi University Journal of Science 35/3 (September 2022), 1140-1150. https://doi.org/10.35378/gujs.885345.
JAMA Wardaya AY, Muhlisin Z, Suseno JE, Nur M, Triadyaksa P, Khumaeni A, Sarwoko E, Windarta J, Hadi S. The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air. Gazi University Journal of Science. 2022;35:1140–1150.
MLA Wardaya, Asep Yoyo et al. “The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air”. Gazi University Journal of Science, vol. 35, no. 3, 2022, pp. 1140-5, doi:10.35378/gujs.885345.
Vancouver Wardaya AY, Muhlisin Z, Suseno JE, Nur M, Triadyaksa P, Khumaeni A, Sarwoko E, Windarta J, Hadi S. The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air. Gazi University Journal of Science. 2022;35(3):1140-5.