BibTex RIS Cite

DFT STUDY OF CsCaF3:Eu

Year 2016, Volume: 29 Issue: 2, 273 - 278, 20.06.2016

Abstract

In this article, we studied some changes on structural, optical and electronic properties of CsCaF3 when it is doped with Eu atom. All properties of doped CsCaF3 are calculated using the full potential linearized augmented plane wave to the density functional theory. The exchange-correlation potential is evaluated using generalized gradient approximation. This work presents comparison of undoped and doped with Eu atoms of CsCaF3 compound. Moreover, we show that CsCaF3:Eu has indirect band gap with  the  Generalized Gradient Approximation and doping makes energy band gap values decreases.

References

  • Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Pawlak DA, Shimamura K, Fukuda T (2002) Band structures of perovskite-like fluorides for vacuum-ultraviolet-transparent lens materials. Jpn J Appl Phys 2 41 (4A):L365-L367. doi:Doi 10.1143/Jjap.41.L365
  • Happek U, Aycibin M, Srivastava AM, Comanzo HA, Camardello S (2009) On the luminesence of of octahedrally coordinated Eu2+ in CsCaF3. ECS transactions 25 (9):39-43
  • Luana V, Costales A, Pendas AM, Florez M, Fernandez VMG (1997) Structural and chemical stability of halide perovskites. Solid State Communications 104 (1):47-50. doi:Doi 10.1016/S0038-1098(97)00154-3
  • Meziani A, Belkhir H (2012) First-principles calculations of structural, elastic and electronic properties of CsCaF3 compound. Computational Materials Science 61:67-70. doi:DOI 10.1016/j.commatsci.2012.03.054
  • Babu KE, Veeraiah A, Swamy DT, Veeraiah V (2012) First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3. Chinese Phys Lett 29 (11). doi:Artn 117102
  • Doi 10.1088/0256-307x/29/11/117102
  • Murtaza G, Ahmad I, Afaq A (2013) Shift of indirect to direct bandgap in going from K to Cs in MCaF3 (M = K, Rb, Cs). Solid State Sci 16:152-157. doi:DOI 10.1016/j.solidstatesciences.2012.10.002
  • Ghebouli B, Ghebouli MA, Bouhemadou A, Fatmi M, Khenata R, Rached D, Ouahrani T, Bin-Omran S (2012) Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) under pressure effect. Solid State Sci 14 (7):903-913. doi:DOI 10.1016/j.solidstatesciences.2012.04.019
  • Bespalov VF, Falin ML, Kazakov BN, Leushin AM, Ibragimov IR, Safiullin GM (1996) EPR and optical spectroscopy of Yb3+ ions in single crystal CsCaF3. Appl Magn Reson 11 (1):125-133
  • Lopez-Moraza S, Seijo L, Barandiaran Z (2000) Structure and spectroscopy of Cr3+ defects in KMgF3, KZnF3, and CsCaF3 crystals. An ab initio model potential embedded cluster study. Int J Quantum Chem 77 (6):961-972. doi:Doi 10.1002/(Sici)1097-461x(2000)77:6<961::Aid-Qua4>3.0.Co;2-A
  • Casasgonzalez J, Studzinski P, Andriessen J, Buzare JY, Fayet JC, Spaeth JM (1986) Transferred Hyperfine Interaction of Cubic Gd3+ Centers in Cscaf3. J Phys C Solid State 19 (34):6767-6775. doi:Doi 10.1088/0022-3719/19/34/014
  • Avram CN, Brik MG (2004) Fine structure of V2+ energy levels in CsCaF3 : V2+. J Lumin 108 (1-4):319-322. doi:DOI 10.1016/j.jlumin.2004.01.067
  • Falin ML, Gerasimov KI, Latypov VA, Leushin AM, Hoefstaetter A (2011) Magnetic Resonance and Optical Spectroscopy of Yb3+ in CsCaF3 Single Crystal: an Analysis of Distortions of the Crystal Lattice near Yb3+. Appl Magn Reson 40 (1):65-73. doi:DOI 10.1007/s00723-010-0183-3
  • Falin ML, Anikeenok OA, Latypov VA, Khaidukov NM, Callens F, Vrielinck H, Hoefstaetter A (2009) Transferred hyperfine interactions for Yb3+ ions in CsCaF3 and Cs2NaYF6 single crystals: Experimental and ab initio study. Physical Review B 80 (17). doi:Artn 174110
  • Doi 10.1103/Physrevb.80.174110
  • Hu YX, Wu SY, Wang XF, Li LL (2009) Studies of the g factors and the superhyperfine parameters for Ni3+ in the fluoroperovskites. Pramana-J Phys 72 (6):989-997
  • Ma CG, Brik MG (2012) Hybrid density-functional calculations of structural, elastic and electronic properties for a series of cubic perovskites CsMF3 (M = Ca, Cd, Hg, and Pb). Computational Materials Science 58:101-112. doi:DOI 10.1016/j.commatsci.2012.02.016
  • Sommerdijk JL, Bril A (1976) Divalent europium luminescence in perovskite-like alkaline-earth alkaline fluorides. J Lumin 11 (5-6):363-367. doi:DOI: 10.1016/0022-2313(75)90043-5
  • Sommerdijk JL, Bril A (1975) Green luminescence of CsCaF3:Eu2+. . Journal of Luminesence 3210 (2):145-147. doi:10.1016/0022-2313(75)90043-5
  • Sommerdijk JL, Bril A (1991) Luminescence of Eu2+-activated Cs(Ca, Mg)F3 and Rb(Ca, Mg)F3. J Lumin 15 (1):115-118
  • Dreizler RM, Gross EKU ( 1990 ) Density Functional Theory. Springer-Verlag, Berlin , Heidelberg
  • P. Blaha KS, G.K.H. Madsen, D. Kvasnicka, J. Luitz (2001) An Augmented Plane Wave Plus Local Orbital Program for Calculating the Crystal Properties.
  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77 (18):3865-3868. doi:DOI 10.1103/PhysRevLett.77.3865
  • Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (1992) An Augemented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties(Vienna University of Technology, Austria, 2001).
  • Birch F (1947) Finite Elastic Strain of Cubic Crystals. Physical Review 71 (11):809-824
  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13 (12):5188. doi:DOI 10.1103/PhysRevB.13.5188

DFT Study of CsCaF3: Eu

Year 2016, Volume: 29 Issue: 2, 273 - 278, 20.06.2016

Abstract

References

  • Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Pawlak DA, Shimamura K, Fukuda T (2002) Band structures of perovskite-like fluorides for vacuum-ultraviolet-transparent lens materials. Jpn J Appl Phys 2 41 (4A):L365-L367. doi:Doi 10.1143/Jjap.41.L365
  • Happek U, Aycibin M, Srivastava AM, Comanzo HA, Camardello S (2009) On the luminesence of of octahedrally coordinated Eu2+ in CsCaF3. ECS transactions 25 (9):39-43
  • Luana V, Costales A, Pendas AM, Florez M, Fernandez VMG (1997) Structural and chemical stability of halide perovskites. Solid State Communications 104 (1):47-50. doi:Doi 10.1016/S0038-1098(97)00154-3
  • Meziani A, Belkhir H (2012) First-principles calculations of structural, elastic and electronic properties of CsCaF3 compound. Computational Materials Science 61:67-70. doi:DOI 10.1016/j.commatsci.2012.03.054
  • Babu KE, Veeraiah A, Swamy DT, Veeraiah V (2012) First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3. Chinese Phys Lett 29 (11). doi:Artn 117102
  • Doi 10.1088/0256-307x/29/11/117102
  • Murtaza G, Ahmad I, Afaq A (2013) Shift of indirect to direct bandgap in going from K to Cs in MCaF3 (M = K, Rb, Cs). Solid State Sci 16:152-157. doi:DOI 10.1016/j.solidstatesciences.2012.10.002
  • Ghebouli B, Ghebouli MA, Bouhemadou A, Fatmi M, Khenata R, Rached D, Ouahrani T, Bin-Omran S (2012) Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) under pressure effect. Solid State Sci 14 (7):903-913. doi:DOI 10.1016/j.solidstatesciences.2012.04.019
  • Bespalov VF, Falin ML, Kazakov BN, Leushin AM, Ibragimov IR, Safiullin GM (1996) EPR and optical spectroscopy of Yb3+ ions in single crystal CsCaF3. Appl Magn Reson 11 (1):125-133
  • Lopez-Moraza S, Seijo L, Barandiaran Z (2000) Structure and spectroscopy of Cr3+ defects in KMgF3, KZnF3, and CsCaF3 crystals. An ab initio model potential embedded cluster study. Int J Quantum Chem 77 (6):961-972. doi:Doi 10.1002/(Sici)1097-461x(2000)77:6<961::Aid-Qua4>3.0.Co;2-A
  • Casasgonzalez J, Studzinski P, Andriessen J, Buzare JY, Fayet JC, Spaeth JM (1986) Transferred Hyperfine Interaction of Cubic Gd3+ Centers in Cscaf3. J Phys C Solid State 19 (34):6767-6775. doi:Doi 10.1088/0022-3719/19/34/014
  • Avram CN, Brik MG (2004) Fine structure of V2+ energy levels in CsCaF3 : V2+. J Lumin 108 (1-4):319-322. doi:DOI 10.1016/j.jlumin.2004.01.067
  • Falin ML, Gerasimov KI, Latypov VA, Leushin AM, Hoefstaetter A (2011) Magnetic Resonance and Optical Spectroscopy of Yb3+ in CsCaF3 Single Crystal: an Analysis of Distortions of the Crystal Lattice near Yb3+. Appl Magn Reson 40 (1):65-73. doi:DOI 10.1007/s00723-010-0183-3
  • Falin ML, Anikeenok OA, Latypov VA, Khaidukov NM, Callens F, Vrielinck H, Hoefstaetter A (2009) Transferred hyperfine interactions for Yb3+ ions in CsCaF3 and Cs2NaYF6 single crystals: Experimental and ab initio study. Physical Review B 80 (17). doi:Artn 174110
  • Doi 10.1103/Physrevb.80.174110
  • Hu YX, Wu SY, Wang XF, Li LL (2009) Studies of the g factors and the superhyperfine parameters for Ni3+ in the fluoroperovskites. Pramana-J Phys 72 (6):989-997
  • Ma CG, Brik MG (2012) Hybrid density-functional calculations of structural, elastic and electronic properties for a series of cubic perovskites CsMF3 (M = Ca, Cd, Hg, and Pb). Computational Materials Science 58:101-112. doi:DOI 10.1016/j.commatsci.2012.02.016
  • Sommerdijk JL, Bril A (1976) Divalent europium luminescence in perovskite-like alkaline-earth alkaline fluorides. J Lumin 11 (5-6):363-367. doi:DOI: 10.1016/0022-2313(75)90043-5
  • Sommerdijk JL, Bril A (1975) Green luminescence of CsCaF3:Eu2+. . Journal of Luminesence 3210 (2):145-147. doi:10.1016/0022-2313(75)90043-5
  • Sommerdijk JL, Bril A (1991) Luminescence of Eu2+-activated Cs(Ca, Mg)F3 and Rb(Ca, Mg)F3. J Lumin 15 (1):115-118
  • Dreizler RM, Gross EKU ( 1990 ) Density Functional Theory. Springer-Verlag, Berlin , Heidelberg
  • P. Blaha KS, G.K.H. Madsen, D. Kvasnicka, J. Luitz (2001) An Augmented Plane Wave Plus Local Orbital Program for Calculating the Crystal Properties.
  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77 (18):3865-3868. doi:DOI 10.1103/PhysRevLett.77.3865
  • Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (1992) An Augemented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties(Vienna University of Technology, Austria, 2001).
  • Birch F (1947) Finite Elastic Strain of Cubic Crystals. Physical Review 71 (11):809-824
  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13 (12):5188. doi:DOI 10.1103/PhysRevB.13.5188
There are 26 citations in total.

Details

Journal Section Physics
Authors

Murat Aycibin

Bahattin Erdinç This is me

Publication Date June 20, 2016
Published in Issue Year 2016 Volume: 29 Issue: 2

Cite

APA Aycibin, M., & Erdinç, B. (2016). DFT STUDY OF CsCaF3:Eu. Gazi University Journal of Science, 29(2), 273-278.
AMA Aycibin M, Erdinç B. DFT STUDY OF CsCaF3:Eu. Gazi University Journal of Science. June 2016;29(2):273-278.
Chicago Aycibin, Murat, and Bahattin Erdinç. “DFT STUDY OF CsCaF3:Eu”. Gazi University Journal of Science 29, no. 2 (June 2016): 273-78.
EndNote Aycibin M, Erdinç B (June 1, 2016) DFT STUDY OF CsCaF3:Eu. Gazi University Journal of Science 29 2 273–278.
IEEE M. Aycibin and B. Erdinç, “DFT STUDY OF CsCaF3:Eu”, Gazi University Journal of Science, vol. 29, no. 2, pp. 273–278, 2016.
ISNAD Aycibin, Murat - Erdinç, Bahattin. “DFT STUDY OF CsCaF3:Eu”. Gazi University Journal of Science 29/2 (June 2016), 273-278.
JAMA Aycibin M, Erdinç B. DFT STUDY OF CsCaF3:Eu. Gazi University Journal of Science. 2016;29:273–278.
MLA Aycibin, Murat and Bahattin Erdinç. “DFT STUDY OF CsCaF3:Eu”. Gazi University Journal of Science, vol. 29, no. 2, 2016, pp. 273-8.
Vancouver Aycibin M, Erdinç B. DFT STUDY OF CsCaF3:Eu. Gazi University Journal of Science. 2016;29(2):273-8.