COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS
Year 2017,
Volume: 30 Issue: 2, 159 - 172, 19.06.2017
Seyed Masoud Aghayan
Ahmad Zireh
,
Ali Ebadian
Abstract
In this paper, we obtain the existence of some common best proximity
point theorems for generalized Lipschitz contractive mappings on cone b-metric space over Banach algebra without assumption of normality. Our results generalize the corresponding result by Xu and Radenovic (Fixed Point Theory and Appl. 2014, 2014:102) and by Huang and Radenovic ( J. Computational Anal. and Appl. 2016, 20(3)). Further, we give an example to illustrate that our works are never equivalent with the counterparts in the literature.
References
- Huang, L-G, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math.
- Anal. Appl. 332, 1468-1476 (2007)
- Jiang, S, Li, Z: Extensions of Banach contraction principle to partial cone metric spaces over a nonnormal
- solid cone. Fixed Point Theory Appl. 2013, 250 (2013)
- Al-Khaleel, M, Al-Sharifa, S, Khandaqji, M: Fixed points for contraction mappings in generalized cone
- metric spaces. Jordan J. Math. Stat. 5(4), 291-307 (2012)
- Gajic, L, Rako cevi c, V: Quasi-contractions on a nonnormal cone metric space. Funct. Anal. Appl.
- (1), 75-79 (2012)
- Jankovic, S, Kadelburg, Z, Radenovic, S: On the cone metric space: a survey. Nonlinear Anal. 74,
- -2601 (2011)
- Cakall, H, Snmez, A, Gen, : On an equivalence of topological vector space valued cone metric spaces
- and metric spaces. Appl. Math. Lett. 25, 429-433 (2012)
- Kadelburg, Z, Radenovic, S, Rako cevi c, V: A note on the equivalence of some metric and cone
- metric fixed point results. Appl. Math. Lett. 24, 370-374 (2011)
- Feng, Y, Mao, W: The equivalence of cone metric spaces and metric spaces. Fixed Point Theory 11(2),
- -264 (2010)
- Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized
- Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)
- Rudin, W: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
- Kadelburg, Z, Radenovic, S: A note on various types of cones and fixed point results in cone metric
- spaces. Asian J. Math. Appl. 2013, Article ID ama0104 (2013)
- Xu S.-Y.,Radenovic S.: Fixed point theorems of generalized Lipschitz mappings on cone metric spaces
- over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014, 2014: 102.
- Kumam P., Dung N. V., Hang V.-T.-L.: Some equivalence between cone b-metric spaces and b-metric
- spaces, Abstr. Appl. Anal., 2013, Article ID 573740, 8 pages, 2013.
- Huang H.-P.,Xu S.-Y.: Fixed point theorems of contractive mappings in cone b-metric spaces and
- applications, Fixed Point Theory Appl., 2013, 2013: 112.
- Azam A., Mehmood N., Ahmad J., Radenovic S.: Multivalued fixed point theorems in cone b-metric
- spaces, Fixed Point Theory Appl., 2013, 2013: 582.
- Huang H., Radenovic S. :Some fixed point results of generalized Lipschitz mappings on cone b-metric
- spaces over Banach algebras, J. Computational Aanl. and Appl., 20(3), 2016, 566-583.
- Huang H., Xu S., Liu H., Radenovic S: Fixed point theorems and T-stability of Picard iteration for
- generalized Lipschitz mappings in cone metric spaces over Banach algebras, J. Computational Aanl. and
- Appl., 20(5), 2016, 869-888.
Year 2017,
Volume: 30 Issue: 2, 159 - 172, 19.06.2017
Seyed Masoud Aghayan
Ahmad Zireh
,
Ali Ebadian
References
- Huang, L-G, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math.
- Anal. Appl. 332, 1468-1476 (2007)
- Jiang, S, Li, Z: Extensions of Banach contraction principle to partial cone metric spaces over a nonnormal
- solid cone. Fixed Point Theory Appl. 2013, 250 (2013)
- Al-Khaleel, M, Al-Sharifa, S, Khandaqji, M: Fixed points for contraction mappings in generalized cone
- metric spaces. Jordan J. Math. Stat. 5(4), 291-307 (2012)
- Gajic, L, Rako cevi c, V: Quasi-contractions on a nonnormal cone metric space. Funct. Anal. Appl.
- (1), 75-79 (2012)
- Jankovic, S, Kadelburg, Z, Radenovic, S: On the cone metric space: a survey. Nonlinear Anal. 74,
- -2601 (2011)
- Cakall, H, Snmez, A, Gen, : On an equivalence of topological vector space valued cone metric spaces
- and metric spaces. Appl. Math. Lett. 25, 429-433 (2012)
- Kadelburg, Z, Radenovic, S, Rako cevi c, V: A note on the equivalence of some metric and cone
- metric fixed point results. Appl. Math. Lett. 24, 370-374 (2011)
- Feng, Y, Mao, W: The equivalence of cone metric spaces and metric spaces. Fixed Point Theory 11(2),
- -264 (2010)
- Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized
- Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)
- Rudin, W: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
- Kadelburg, Z, Radenovic, S: A note on various types of cones and fixed point results in cone metric
- spaces. Asian J. Math. Appl. 2013, Article ID ama0104 (2013)
- Xu S.-Y.,Radenovic S.: Fixed point theorems of generalized Lipschitz mappings on cone metric spaces
- over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014, 2014: 102.
- Kumam P., Dung N. V., Hang V.-T.-L.: Some equivalence between cone b-metric spaces and b-metric
- spaces, Abstr. Appl. Anal., 2013, Article ID 573740, 8 pages, 2013.
- Huang H.-P.,Xu S.-Y.: Fixed point theorems of contractive mappings in cone b-metric spaces and
- applications, Fixed Point Theory Appl., 2013, 2013: 112.
- Azam A., Mehmood N., Ahmad J., Radenovic S.: Multivalued fixed point theorems in cone b-metric
- spaces, Fixed Point Theory Appl., 2013, 2013: 582.
- Huang H., Radenovic S. :Some fixed point results of generalized Lipschitz mappings on cone b-metric
- spaces over Banach algebras, J. Computational Aanl. and Appl., 20(3), 2016, 566-583.
- Huang H., Xu S., Liu H., Radenovic S: Fixed point theorems and T-stability of Picard iteration for
- generalized Lipschitz mappings in cone metric spaces over Banach algebras, J. Computational Aanl. and
- Appl., 20(5), 2016, 869-888.