Research Article
BibTex RIS Cite

Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System

Year 2018, Volume: 31 Issue: 3, 831 - 844, 01.09.2018

Abstract

This paper present an effective optimization algorithm
for Optimal Power Flow (OPF) problem in electrical power systems. Fractional
Order Darwinian Particle Swarm Optimization (FODPSO) algorithm is modified with
constraint threshold limitation mechanism to solve OPF problem. Results are
tested and compared with Vector PSO (VPSO) and some other optimization
algorithms in the literature. FODPSO and VPSO algorithms are applied to obtain
optimal settings of control variables in power system.  The algorithms are used to tune control parameters
of real time 154kV east Anatolian transmission system to reduce power loses and
to supply uninterrupted power flow. The results are applied to virtual model of
the transmission system, obtained by DigSilent simulation software, to test
without taking any risk that may occur in real time systems. Thus, optimal
parameter settings are recommended for real time transmission system. Then, the
proposed algorithm is applied to IEEE 14 bus-bar test system to show the
effectiveness and results are compared with the other algorithms in literature.

References

  • [1] Ghanghro, S.P., Sahito, A., Memon, S., Jumani, M., Tunio, S. “Network Reconfiguration for Power Loss Reduction in Distribution System” , Sindh University Research Journal-SURJ, Vol.48, 2016. pp.53-56.
  • [2] Ela, E.L., Abou, A.A., ABIDO, M.A., SPEA, S.R. “Optimal power flow using differential evolution algorithm” , Electric Power Systems Research, 2010, 80.7: 878-885.
  • [3] Abaci, K., Yamacli, V., Akdağlı, A. “Optimal power flow with SVC devices by using the artificial bee colony algorithm”, Turkish Journal EE &CS; 2016; 24(1), pp.341-353.
  • [4] Adaryani, M.R., Karami, A. “Artificial bee colony algorithm for solving multi-objective optimal power flow problem”, International Journal of Electrical Power & Energy Systems;2013; 53: 219-230
  • [5] Bouchekara, H.R.E.H. “Optimal power flow using black-hole-based optimization approach” , Applied Soft Computing; 2014; 24: 879-888.
  • [6] Zhang, X., Yu, T., Yang, B., Cheng, L. “Accelerating bio-inspired optimizer with transfer reinforcement learning for reactive power optimization”, Knowledge-Based Systems, 2017, 116: 26-38.
  • [7] Nikham, T., Rasoul, N.M., Jabbari, M., Malekpour, A.R. “A modified shuffle frog leaping algorithm for multi-objective optimal powe flow” , Energy, 2011, 36.11: 6420-6432.
  • [8] Abido, M.A. “Optimal design of power-system stabilizers using particle swarm optimization” , IEEE Transactions on Energy conversion, 2002, 17.3: 406-413.
  • [9] Kadir, A.F.A, Mohamed, A., Shareef, H., Wanik, M.Z.C. (2013). “Optimal placement and sizing of distributed generations in distribution systems for minimizing losses and THDv using evolutionary programming” ,TJEE& Comp.Sci., 21, pp. 2269-2282.
  • [10] Lahmiri, S., Boukadoum, M. “An evaluation of particle swarm optimization techniques in segmentation of biomedica limages” , In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation pp. 1313-1320.
  • [11] Xie, W., Li, Y. “An automatic fractional coefficient setting method of FODPSO for hyperspectral image segmentation”, In SPIE Sensing Technology+ Applications (pp. 95010D-95010D). International Society for Opticsand Photonics.
  • [12] Ryalat, M.H., Emmens, D., Hulse, M., Bell, D., Al-Rahamneh, Z., Laycock, S., Fisher, M. (2016, September). “Evaluation of particle swarm optimisation for medical image segmentation”, In International Conference on Systems Science pp. 61-72.
  • [13] https://hvdc.ca/uploads/knowledge_base/ieee_14_bus_technical_note.pdf? (Last accessed January 18, 2018)
  • [14] Kennedy, J., Eberhart, R. A. “new optimizer using particle swarm theory”, In Proceedings of IEEE Sixth International Symposium on Micro Machine Human Science Vol. 34, Issue 2008, pp. 39–43.
  • [15] Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R. “Particle swarm optimization: Basic concepts, variants and applications in power systems”, IEEE Transactions on Evolutionary Computation; 2008, 2(2): 171–195
  • [16] Tillett, J., Rao, T.M., Sahin, F., Rao, R, Brockport, S. “Darwinian particle swarm optimization”, In B. Prasad (Ed.), Proceedings of the 2nd Indian International Conference on Artificial Intelligence Pune, India; 2008; pp. 1474–1487.
  • [17] Pires, E.J., Machado, J.A., Cunha, P.B, Mendes, L. “Particle swarm optimization with fractional-order velocity”, Journal on Nonlinear Dynamics; 2010, 61(1–2): 295–301.
  • [18] Couceiro, M.S., Ghamisi, P. “Fractional Order Darwinian PSO: Applications and Evaluation of an Evolutionary Algorithm”, Springer, Londen, 2015.
  • [19] Ostalczyk, P.W. “A note on the Grünwald-Letnikov fractional-order backward-difference”, Physica Scripta; 2009; 136, 014036.
  • [20] Omkar, S.N., Mudigere, D., Naik, G.N. “Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures”, Computers & structures, 2008, 86.1: 1-14.
  • [21] Ayan, K., Kılıç, U. “Optimal reaktif güç akışının kaotik yapay arı kolonisi ile çözümü”, 6th (IATS’11) 2011, Elazığ-Türkiye, 20-24
  • [22] Nachimuthu, D.S., Basha, R.J. “Reactive Power Loss Optimization for an IEEE 14-Bus Power System Using Various Algorithms”, IU-Journal of Electrical & Electronics Engineering; 2014; 14(1), 1737-1744.
Year 2018, Volume: 31 Issue: 3, 831 - 844, 01.09.2018

Abstract

References

  • [1] Ghanghro, S.P., Sahito, A., Memon, S., Jumani, M., Tunio, S. “Network Reconfiguration for Power Loss Reduction in Distribution System” , Sindh University Research Journal-SURJ, Vol.48, 2016. pp.53-56.
  • [2] Ela, E.L., Abou, A.A., ABIDO, M.A., SPEA, S.R. “Optimal power flow using differential evolution algorithm” , Electric Power Systems Research, 2010, 80.7: 878-885.
  • [3] Abaci, K., Yamacli, V., Akdağlı, A. “Optimal power flow with SVC devices by using the artificial bee colony algorithm”, Turkish Journal EE &CS; 2016; 24(1), pp.341-353.
  • [4] Adaryani, M.R., Karami, A. “Artificial bee colony algorithm for solving multi-objective optimal power flow problem”, International Journal of Electrical Power & Energy Systems;2013; 53: 219-230
  • [5] Bouchekara, H.R.E.H. “Optimal power flow using black-hole-based optimization approach” , Applied Soft Computing; 2014; 24: 879-888.
  • [6] Zhang, X., Yu, T., Yang, B., Cheng, L. “Accelerating bio-inspired optimizer with transfer reinforcement learning for reactive power optimization”, Knowledge-Based Systems, 2017, 116: 26-38.
  • [7] Nikham, T., Rasoul, N.M., Jabbari, M., Malekpour, A.R. “A modified shuffle frog leaping algorithm for multi-objective optimal powe flow” , Energy, 2011, 36.11: 6420-6432.
  • [8] Abido, M.A. “Optimal design of power-system stabilizers using particle swarm optimization” , IEEE Transactions on Energy conversion, 2002, 17.3: 406-413.
  • [9] Kadir, A.F.A, Mohamed, A., Shareef, H., Wanik, M.Z.C. (2013). “Optimal placement and sizing of distributed generations in distribution systems for minimizing losses and THDv using evolutionary programming” ,TJEE& Comp.Sci., 21, pp. 2269-2282.
  • [10] Lahmiri, S., Boukadoum, M. “An evaluation of particle swarm optimization techniques in segmentation of biomedica limages” , In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation pp. 1313-1320.
  • [11] Xie, W., Li, Y. “An automatic fractional coefficient setting method of FODPSO for hyperspectral image segmentation”, In SPIE Sensing Technology+ Applications (pp. 95010D-95010D). International Society for Opticsand Photonics.
  • [12] Ryalat, M.H., Emmens, D., Hulse, M., Bell, D., Al-Rahamneh, Z., Laycock, S., Fisher, M. (2016, September). “Evaluation of particle swarm optimisation for medical image segmentation”, In International Conference on Systems Science pp. 61-72.
  • [13] https://hvdc.ca/uploads/knowledge_base/ieee_14_bus_technical_note.pdf? (Last accessed January 18, 2018)
  • [14] Kennedy, J., Eberhart, R. A. “new optimizer using particle swarm theory”, In Proceedings of IEEE Sixth International Symposium on Micro Machine Human Science Vol. 34, Issue 2008, pp. 39–43.
  • [15] Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R. “Particle swarm optimization: Basic concepts, variants and applications in power systems”, IEEE Transactions on Evolutionary Computation; 2008, 2(2): 171–195
  • [16] Tillett, J., Rao, T.M., Sahin, F., Rao, R, Brockport, S. “Darwinian particle swarm optimization”, In B. Prasad (Ed.), Proceedings of the 2nd Indian International Conference on Artificial Intelligence Pune, India; 2008; pp. 1474–1487.
  • [17] Pires, E.J., Machado, J.A., Cunha, P.B, Mendes, L. “Particle swarm optimization with fractional-order velocity”, Journal on Nonlinear Dynamics; 2010, 61(1–2): 295–301.
  • [18] Couceiro, M.S., Ghamisi, P. “Fractional Order Darwinian PSO: Applications and Evaluation of an Evolutionary Algorithm”, Springer, Londen, 2015.
  • [19] Ostalczyk, P.W. “A note on the Grünwald-Letnikov fractional-order backward-difference”, Physica Scripta; 2009; 136, 014036.
  • [20] Omkar, S.N., Mudigere, D., Naik, G.N. “Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures”, Computers & structures, 2008, 86.1: 1-14.
  • [21] Ayan, K., Kılıç, U. “Optimal reaktif güç akışının kaotik yapay arı kolonisi ile çözümü”, 6th (IATS’11) 2011, Elazığ-Türkiye, 20-24
  • [22] Nachimuthu, D.S., Basha, R.J. “Reactive Power Loss Optimization for an IEEE 14-Bus Power System Using Various Algorithms”, IU-Journal of Electrical & Electronics Engineering; 2014; 14(1), 1737-1744.
There are 22 citations in total.

Details

Journal Section Electrical & Electronics Engineering
Authors

Ozan Akdağ

Fatih Okumuş

Adnan Fatih Kocamaz

Celaleddin Yeroğlu

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 31 Issue: 3

Cite

APA Akdağ, O., Okumuş, F., Kocamaz, A. F., Yeroğlu, C. (2018). Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science, 31(3), 831-844.
AMA Akdağ O, Okumuş F, Kocamaz AF, Yeroğlu C. Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science. September 2018;31(3):831-844.
Chicago Akdağ, Ozan, Fatih Okumuş, Adnan Fatih Kocamaz, and Celaleddin Yeroğlu. “Fractional Order Darwinian PSO With Constraint Threshold for Load Flow Optimization of Energy Transmission System”. Gazi University Journal of Science 31, no. 3 (September 2018): 831-44.
EndNote Akdağ O, Okumuş F, Kocamaz AF, Yeroğlu C (September 1, 2018) Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science 31 3 831–844.
IEEE O. Akdağ, F. Okumuş, A. F. Kocamaz, and C. Yeroğlu, “Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System”, Gazi University Journal of Science, vol. 31, no. 3, pp. 831–844, 2018.
ISNAD Akdağ, Ozan et al. “Fractional Order Darwinian PSO With Constraint Threshold for Load Flow Optimization of Energy Transmission System”. Gazi University Journal of Science 31/3 (September 2018), 831-844.
JAMA Akdağ O, Okumuş F, Kocamaz AF, Yeroğlu C. Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science. 2018;31:831–844.
MLA Akdağ, Ozan et al. “Fractional Order Darwinian PSO With Constraint Threshold for Load Flow Optimization of Energy Transmission System”. Gazi University Journal of Science, vol. 31, no. 3, 2018, pp. 831-44.
Vancouver Akdağ O, Okumuş F, Kocamaz AF, Yeroğlu C. Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science. 2018;31(3):831-44.