Research Article
BibTex RIS Cite
Year 2020, Volume: 33 Issue: 2, 525 - 539, 01.06.2020
https://doi.org/10.35378/gujs.548269

Abstract

References

  • Referans1 Kennedy, D. P., Murley, P. C., and Kleinfelder, W., “On the Measurement of Impurity Atom Distributions in Silicon by the Differential Capacitance Technique”, Impurity Distributions In Silicon, 399-409, (1968). doi.org/10.1147/rd.125.0399Referans2 Hudait, M.K., & Kurupanidhi, S.B., “Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates”, Material Science and Engineering, B87: 141-147, (2001).Referans3 Cheung, S. K., and Cheung, N.W., “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Let., 49(2): 85-87, (1986).Referans4 Paoli, T. L, and Barnes, P. A, “Saturation of the junction voltage in stripe-geometry (AIGa)As double-heterostructure junction lasers”, Appl. Phys. Lett., 28: 714, (1976).Referans5 Ayyildiz, E., Temirci, C., Bati, B., and Türüt, A., “The effect of series resistance on calculation of the interface state density distribution in Schottky diodes”, Int. J. Electronics, 88: 6, 625-633 (2001). doi.org/10.1080/ 00207210110044396Referans6 Horvath, Z. J., “Evaluation of the interface state energy distribution from Schottky I-V characteristics”, J. Appl. Phys., 63(3): 976-978, (1988). doi.org/10.1063/1.340048Referans7 Kern, W., “Handbook of semiconductor wafer cleaning technology: science, technology, and applications”, Noyes Publications, Westwood, New Jersey, U.S.A, (1993). Referans8 Sze, S.M., Physics of Semiconductor Devices, J.Wiley&Sons, Singapore, (1981).Referans9 Sharma, B.L., “Metal-Semiconductor Schottky Barrier Junctions and Their Applications”, Plenum Press, UK, (1984).Referans10 Shur, M., Physics of Semiconductor Devices, Prentice-Hall Inc, New Jersey, US, (1990).Referans11 Schroder, D.K., “Semiconductor Material and Device Characterization”, J.Willey&Sons, USA, (2006).Referans12 Rhoderick, E.H., and Williams, R.H., Metal-Semiconductor Contacts, Oxford, Clarendon Press, UK, (1988).Referans13 Böer, K.W., Introduction to Space Charge Effects in Semiconductors, Springer Verlag Inc, Berlin, Germany, (2010).Referans14 Ng, K.K., Complete Guide to Semiconductor Devices, Graw-Hill Inc, New York, USA, (1995).Referans15 Grundmann, M., “The Physiscs of Semiconductors”, Springer-Verlag Inc, Germany, (2006).Referans16 Card, H.C., and Rhoderick, E.H., Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, S .J. Phys. D., 4: 1589-1601, (1971).Referans17 Rhoderick, E.H., “Metal-semiconductor contacts”, IEEPROC, 129, Pt. I, No. 1, (1982).Referans18 Korkut, A., “New serial resistance equations: Derivated from Cheungs' functions for the forward and reverse bias I”, Microelectronic Engineering, 197: 5, 45-52, (2018).Referans19 Korkut A., "On differential depletion length of Schottky diodes with copper-nickel alloy metal of front contact", Turkish Journal of Physics, 42: 587-599, (2018).Referans20 Korkut, A, & Bati, B., “The Effect of Air-Exposed Layer on Electrical Properties of Cu/n-Si/Al Schottky Diodes”, J.Thin.Fil.Sci.Tec., 52: 97-102, (2016). doi.org/10.18576/ijtfst/050203Referans21 Korkut, A., “Differential Depletion Capacitance Approximation Analysis Under DC Voltage For Air-Exposed Cu/n-Si Schottky Diodes”, Surface Review and Letters,; 25: 4, 18500, (43-12), (2018). doi: 10.1142/S0218625X18500439Referans22 Cowley, A.M., “Depletion Capacitance and Diffusion Potential of Gallium Phosphide Schottky-Barrier Diodes”, J. Applied Physics, 36(10): 3012-3220, (1966).Referans23 Twarowski, A. J, & Albrecht, A. C., “Depletion layer studies in organic films: Low frequency capacitance measurements in polycrystalline tetracene”, The Journal of Chemical Physics, 70, 2255-2261, (1979). doi.org/10.1063/1.437729Referans24 Farag, A.A.M, Yahia, I. S., Fadel M., “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode”, Int. J. Hydrogen Energy. 34: 4906-4913 (2009).

Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures

Year 2020, Volume: 33 Issue: 2, 525 - 539, 01.06.2020
https://doi.org/10.35378/gujs.548269

Abstract

This study aimed to investigate the differential depletion charge density for (Ag, Cu, Ni) /n-Si/Al Schottky diodes which depend on ohmic contact temperatures. Ohmic contact temperature defines the Schottky diode parameters. Furthermore, ohmic temperature is concerned with diode quality. In general, depletion charge density is determined as depending on built-in potential. The differential depletion charge density is smaller than zero-voltage depletion charge density (V = 0, Vbi ≠ 0) in the case of forward bias and higher than the zero-voltage depletion charge density for reverse bias. When the depletion charge density formula was expanded into a series, new equations revealed appreciable results. Boundary-values were found for differ-ential depletion charge density using normal and expanded formulae.

References

  • Referans1 Kennedy, D. P., Murley, P. C., and Kleinfelder, W., “On the Measurement of Impurity Atom Distributions in Silicon by the Differential Capacitance Technique”, Impurity Distributions In Silicon, 399-409, (1968). doi.org/10.1147/rd.125.0399Referans2 Hudait, M.K., & Kurupanidhi, S.B., “Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates”, Material Science and Engineering, B87: 141-147, (2001).Referans3 Cheung, S. K., and Cheung, N.W., “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Let., 49(2): 85-87, (1986).Referans4 Paoli, T. L, and Barnes, P. A, “Saturation of the junction voltage in stripe-geometry (AIGa)As double-heterostructure junction lasers”, Appl. Phys. Lett., 28: 714, (1976).Referans5 Ayyildiz, E., Temirci, C., Bati, B., and Türüt, A., “The effect of series resistance on calculation of the interface state density distribution in Schottky diodes”, Int. J. Electronics, 88: 6, 625-633 (2001). doi.org/10.1080/ 00207210110044396Referans6 Horvath, Z. J., “Evaluation of the interface state energy distribution from Schottky I-V characteristics”, J. Appl. Phys., 63(3): 976-978, (1988). doi.org/10.1063/1.340048Referans7 Kern, W., “Handbook of semiconductor wafer cleaning technology: science, technology, and applications”, Noyes Publications, Westwood, New Jersey, U.S.A, (1993). Referans8 Sze, S.M., Physics of Semiconductor Devices, J.Wiley&Sons, Singapore, (1981).Referans9 Sharma, B.L., “Metal-Semiconductor Schottky Barrier Junctions and Their Applications”, Plenum Press, UK, (1984).Referans10 Shur, M., Physics of Semiconductor Devices, Prentice-Hall Inc, New Jersey, US, (1990).Referans11 Schroder, D.K., “Semiconductor Material and Device Characterization”, J.Willey&Sons, USA, (2006).Referans12 Rhoderick, E.H., and Williams, R.H., Metal-Semiconductor Contacts, Oxford, Clarendon Press, UK, (1988).Referans13 Böer, K.W., Introduction to Space Charge Effects in Semiconductors, Springer Verlag Inc, Berlin, Germany, (2010).Referans14 Ng, K.K., Complete Guide to Semiconductor Devices, Graw-Hill Inc, New York, USA, (1995).Referans15 Grundmann, M., “The Physiscs of Semiconductors”, Springer-Verlag Inc, Germany, (2006).Referans16 Card, H.C., and Rhoderick, E.H., Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, S .J. Phys. D., 4: 1589-1601, (1971).Referans17 Rhoderick, E.H., “Metal-semiconductor contacts”, IEEPROC, 129, Pt. I, No. 1, (1982).Referans18 Korkut, A., “New serial resistance equations: Derivated from Cheungs' functions for the forward and reverse bias I”, Microelectronic Engineering, 197: 5, 45-52, (2018).Referans19 Korkut A., "On differential depletion length of Schottky diodes with copper-nickel alloy metal of front contact", Turkish Journal of Physics, 42: 587-599, (2018).Referans20 Korkut, A, & Bati, B., “The Effect of Air-Exposed Layer on Electrical Properties of Cu/n-Si/Al Schottky Diodes”, J.Thin.Fil.Sci.Tec., 52: 97-102, (2016). doi.org/10.18576/ijtfst/050203Referans21 Korkut, A., “Differential Depletion Capacitance Approximation Analysis Under DC Voltage For Air-Exposed Cu/n-Si Schottky Diodes”, Surface Review and Letters,; 25: 4, 18500, (43-12), (2018). doi: 10.1142/S0218625X18500439Referans22 Cowley, A.M., “Depletion Capacitance and Diffusion Potential of Gallium Phosphide Schottky-Barrier Diodes”, J. Applied Physics, 36(10): 3012-3220, (1966).Referans23 Twarowski, A. J, & Albrecht, A. C., “Depletion layer studies in organic films: Low frequency capacitance measurements in polycrystalline tetracene”, The Journal of Chemical Physics, 70, 2255-2261, (1979). doi.org/10.1063/1.437729Referans24 Farag, A.A.M, Yahia, I. S., Fadel M., “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode”, Int. J. Hydrogen Energy. 34: 4906-4913 (2009).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Abdulkadir Korkut 0000-0003-0100-4057

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 33 Issue: 2

Cite

APA Korkut, A. (2020). Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures. Gazi University Journal of Science, 33(2), 525-539. https://doi.org/10.35378/gujs.548269
AMA Korkut A. Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures. Gazi University Journal of Science. June 2020;33(2):525-539. doi:10.35378/gujs.548269
Chicago Korkut, Abdulkadir. “Differential Depletion Charge Density of the Approximation of Schottky Diodes As Ohmic Annealed a Variety of Temperatures”. Gazi University Journal of Science 33, no. 2 (June 2020): 525-39. https://doi.org/10.35378/gujs.548269.
EndNote Korkut A (June 1, 2020) Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures. Gazi University Journal of Science 33 2 525–539.
IEEE A. Korkut, “Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures”, Gazi University Journal of Science, vol. 33, no. 2, pp. 525–539, 2020, doi: 10.35378/gujs.548269.
ISNAD Korkut, Abdulkadir. “Differential Depletion Charge Density of the Approximation of Schottky Diodes As Ohmic Annealed a Variety of Temperatures”. Gazi University Journal of Science 33/2 (June 2020), 525-539. https://doi.org/10.35378/gujs.548269.
JAMA Korkut A. Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures. Gazi University Journal of Science. 2020;33:525–539.
MLA Korkut, Abdulkadir. “Differential Depletion Charge Density of the Approximation of Schottky Diodes As Ohmic Annealed a Variety of Temperatures”. Gazi University Journal of Science, vol. 33, no. 2, 2020, pp. 525-39, doi:10.35378/gujs.548269.
Vancouver Korkut A. Differential Depletion Charge Density of the Approximation of Schottky Diodes as Ohmic Annealed a Variety of Temperatures. Gazi University Journal of Science. 2020;33(2):525-39.