Research Article
BibTex RIS Cite

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1464228

Abstract

References

  • [1] Environment, U. N., Scrivener, K. L., John, V. M., and Gartner, E. M., "Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”, Cement and Concrete Research, 114: 2-26, (2018). https://doi.org/10.1016/j.cemconres.2018.03.015
  • [2] Şenol, A. F. and Karakurt, C., "Atık Mermer Tozunun Çimento Harçlarının Dayanım Özelliklerine Etkisi", International Conference on Frontiers in Academic Research, Vol. 1, 427-431, (2023). https://as-proceeding.com/index.php/icfar/article/view/142
  • [3] Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A. and Scrivener, K. L., "Environmental impacts and decarbonization strategies in the cement and concrete industries", Nature Reviews Earth and Environment, 1(11): 559-573, (2020). https://doi.org/10.1038/s43017-020-0093-3
  • [4] Nasr, M. S., Ali, I. M., Hussein, A. M., Shubbar, A. A., Kareem, Q. T. and AbdulAmeer, A. T., "Utilization of locally produced waste in the production of sustainable mortar", Case Studies in Construction Materials, 13: e00464, (2020). https://doi.org/10.1016/j.cscm.2020.e00464
  • [5] Díaz, Y. C., Berriel, S. S., Heierli, U., Favier, A. R., Machado, I. R. S., Scrivener, K. L., ... and Habert, G., "Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies", Development Engineering, 2: 82-91, (2017). https://doi.org/10.1016/j.deveng.2017.06.001
  • [6] Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S. and Dutta, S. C., "A critical review and assessment for usage of recycled aggregate as sustainable construction material", Construction and Building Materials, 131: 721-740, (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.029
  • [7] Nasr, M. S., Salman, A. J., Ghayyib, R. J., Shubbar, A., Al-Mamoori, S., Al-khafaji, Z., ... and Sadique, M., "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment", Energies, 16(12): 4587, (2023). https://doi.org/10.3390/en16124587
  • [8] Ahmad, J., Zhou, Z., and Deifalla, A. F., "Self-Compacting Concrete with Partially Substitution of Waste Marble: A Review", International Journal of Concrete Structures and Materials, 17(1): 1-24, (2023). https://doi.org/10.1186/s40069-023-00585-5
  • [9] Letelier, V., Henríquez-Jara, B. I., Manosalva, M., Parodi, C., and Ortega, J. M., "Use of waste glass as a replacement for raw materials in mortars with a lower environmental impact", Energies, 12(10): 1974, (2019). https://doi.org/10.3390/en12101974
  • [10] Adesina, A., "Recent advances in the concrete industry to reduce its carbon dioxide emissions”, Environmental Challenges, 1: 100004, (2020). https://doi.org/10.1016/j.envc.2020.100004
  • [11] Tayeh, B. A., Hadzima-Nyarko, M., Zeyad, A. M. and Al-Harazin, S. Z., "Properties and durability of concrete with olive waste ash as a partial cement replacement", Advances in Concrete Construction, 11(1): 59-71, (2021). https://doi.org/10.12989/acc.2021.11.1.059
  • [12] Shubbar, AAF, Jafer, HM, Dulaimi, AFD, Atherton, W. and Al-Rifaie, A., " The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash", International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 11(7): 905-908. ISSN 1307-6892, (2017). https://doi.org/10.1999/1307-6892/10007584
  • [13] Atef, M., Bassioni, G., Azab, N. and Abdellatif, M. H., "Assessment of cement replacement with fine recycled rubber particles in sustainable cementitious composites", Journal of the Mechanical Behaviour of Materials, 30(1): 59-65, (2021). https://doi.org/10.1515/jmbm-2021-0007
  • [14] Hamad, M. A., Nasr, M., Shubbar, A., Al-Khafaji, Z., Al Masoodi, Z., Al-Hashimi, O., ... and Hashim, K., "Production of ultra-high-performance concrete with low energy consumption and carbon footprint using supplementary cementitious materials instead of silica fume: A review", Energies, 14(24): 8291, (2021). https://doi.org/10.3390/en14248291
  • [15] Hawileh, R. A., Abdalla, J. A., Fardmanesh, F., Shahsana, P. and Khalili, A., "Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement", Archives of Civil and Mechanical Engineering, 17: 511-519, (2017). https://doi.org/10.1016/j.acme.2016.11.006
  • [16] Coelho, F. Z., Zulcão, R., Calmon, J. L. and Vieira, D. R., "Cradle-to-gate life cycle assessment of self-compacting concrete incorporating alternative materials: a case study", Revista Principia-Divulgação Científica e Tecnológica do IFPB, 48: 70-84, (2020).
  • [17] Kubba, H. Z., Nasr, M. S., Al-Abdaly, N. M., Dhahir, M. K. and Najim, W. N., "Influence of incinerated and non-incinerated waste paper on properties of cement mortar", IOP Conference Series: Materials Science and Engineering, Vol. 671. No. 1. IOP Publishing, (2020, January). https://doi.org/10.1088/1757-899X/671/1/012113
  • [18] Sakir, S., Raman, S. N., Safiuddin, M., Kaish, A. A. and Mutalib, A. A., "Utilization of by-products and wastes as supplementary cementitious materials in structural mortar for sustainable construction", Sustainability, 12(9): 3888, (2020). https://doi.org/10.3390/su12093888
  • [19] Adetoye Olubunmi, A., Aliyu, S. and Hassan, I., "Suitability of using Marble Dust Powder and Rice Husk Ash in Production of Self-Compacting Concrete: A Review", International Journal of Multidisciplinary Research in Science, Engineering and Technology, (2023). https://doi.org/10.15680/IJMRSET.2023.0609001
  • [20] Poppe, A. M. and De Schutter, G., "Cement hydration in the presence of high filler contents", Cement and Concrete Research, 35(12): 2290-2299, (2005). https://doi.org/10.1016/j.cemconres.2005.03.008
  • [21] Ye, G., Liu, X., De Schutter, G., Poppe, A. M. and Taerwe, L., "Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes", Cement and Concrete Composites, 29(2): 94-102, 2582-7219, (2007). https://doi.org/10.1016/j.cemconcomp.2006.09.003
  • [22] Topcu, I. B., Bilir, T. and Uygunoğlu, T., "Effect of waste marble dust content as filler on properties of self-compacting concrete", Construction and Building Materials, 23(5): 1947-1953, (2009). https://doi.org/10.1016/j.conbuildmat.2008.09.007
  • [23] Zhao, H., Sun, W., Wu, X. and Gao, B., "The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures", Journal of Cleaner Production, 95: 66-74, (2015). https://doi.org/10.1016/j.jclepro.2015.02.050
  • [24] Ruiz-Sánchez, A., Sánchez, M., Zaror, C. A., Vega, M. I. and Muñoz, C. M., "Greenhouse gases in the production of cement using marble dust as raw material", Construction and Building Research, Springer Netherlands, 435-441: (2014). https://doi.org/10.1007/978-94-007-7790-3_53
  • [25] Özata, G., "Mermer ve Polietilentreftalat (PET) Atıklarının Yapı Malzemesi Olarak Geri Dönüşümü", (Doctoral dissertation, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyon, 8-13, (2009).
  • [26] Bonavetti, V., Donza, H., Menendez, G., Cabrera, O. and Irassar, E. F., "Limestone filler cement in low w/c concrete: A rational use of energy", Cement and Concrete Research, 33(6): 865-871, (2003). https://doi.org/10.1016/S0008-8846(02)01087-6
  • [27] Yahia, A., Tanimura, M. and Shimoyama, Y., "Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio", Cement and Concrete Research, 35(3): 532-539, (2005). https://doi.org/10.1016/j.cemconres.2004.05.008
  • [28] Assie, S., Escadeillas, G. and Waller, V., "Estimates of self-compacting concrete ‘potential’durability", Construction and Building Materials, 21(10): 1909-1917, (2007). https://doi.org/10.1016/j.conbuildmat.2006.06.034
  • [29] Benjeddou, O., Alyousef, R., Mohammadhosseini, H., Soussi, C., Khadimallah, M. A., Alabduljabbar, H. and Tahir, M. M., "Utilisation of waste marble powder as low-cost cementing materials in the production of mortar", Journal of Building Engineering, 32, 101642, (2020). https://doi.org/10.1016/j.jobe.2020.101642
  • [30] Liguori, V., Rizzo, G., and Traverso, M., "Marble quarrying: an energy and waste intensive activity in the production of building materials", WIT Transactions on Ecology and the Environment, 108, 197-207, (2008). https://doi.org/10.2495/EEIA080201
  • [31] Sufian, M., Ullah, S., Ostrowski, K.A., Ahmad, A., Zia, A., ´Sliwa-Wieczorek, K., Awan, A. A., "An Experimental and Empirical Study on The Use of Waste Marble Powder in Construction Material", Materials, 14 (14): 3829, (2021). https://doi.org/10.3390/ ma14143829
  • [32] Kuoribo, E. and Mahmoud, H., "Utilisation of Waste Marble Dust in Concrete Production: A Scientometric Review and Future Research Directions", Journal of Cleaner Production, 133872, (2022). https://doi.org/10.1016/j.jclepro.2022.133872
  • [33] Saygılı, A. "Use of Waste Marble Dust for Stabilization of Clayey Soil", Materials Science, 21(4): 601-606, (2015). https://doi.org/10.5755/j01.ms.21.4.11966
  • [34] Arsoy, Z., Çiftçi, H., Ersoy, B., Uygunoğlu, T., and Arslan, B.,"Afyonkarahisar Bölgesi Mermer Parça Atıklarının Beton Agregası Olarak Değerlendirilebilirliğinin Araştırılması", El-Cezeri, 6(3): 503-516, (2019). https://doi.org/10.31202/ecjse.554339
  • [35] Usta, M., "Atık Mermer Tozunun Zeminlerin Serbest Basınç Dayanımına Etkisi", (Master's thesis). Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyon, (2004).
  • [36] Idrees, M., and Jamil, S. "Effect of Rice Husk Ash and Marble Powder on Mechanical Behaviour of Concrete", Fifth International Conference on Sustainable Construction Materials and Technologies, (July 2019). https://doi.org/10.18552/2019/IDSCMT5042
  • [37] Ashish, D. K., Verma, S. K., Kumar, R. and Sharma, N. "Properties of Concrete Incorporating Sand and Cement with Waste Marble Powder", Advances in Concrete Construction, 4(2): 145, (2016). DOI: http://dx.doi.org/10.12989/acc.2016.4.2.145
  • [38] Anjaneyulu, G. and Rao, M. S., "An Experimental Analysis of Strength Characteristics of Concrete Using Partial Replacement of Cement by Granite Dust and Marble Dust", Anveshana’s International Journal Research in Engineering and Applied Sciences, Volume 2, Issue 5. ISSN-2455-6300, (2017, May).
  • [39] Ruiz-Sánchez, A., Sánchez-Polo, M., and Rozalen, M., "Waste marble dust: An interesting residue to produce cement", Construction and Building Materials, 224: 99-108, (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.031
  • [40] Krishnan, S., Kanaujia, S. K., Mithia, S., and Bishnoi, S., "Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay", Construction and Building Materials, 164: 265-274, (2018).https://doi.org/10.1016/j.conbuildmat.2017.12.240
  • [41] Özkılıç, Y. O., Zeybek, Ö., Bahrami, A., Çelik, A. İ., Mydin, M. A. O., Karalar, M., ... and Jagadesh, P., "Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete", Journal of Materials Research and Technology, 25: 4799-4819, (2023). https://doi.org/10.1016/j.jmrt.2023.06.126
  • [42] Sharma, S., Pastariya, S. and Verma, G. K., "Experimental Investigation on Partial Replacement of Cement with Marble Dust Powder on Properties of Concrete", International Journal of Software and Hardware Research in Engineering, ISSN-2347-4890. Volume 5 Issue 9, (2017).
  • [43] Verma, P., Kumar, R., Mukherjee, S., and Sharma, M., "Sustainable self-compacting concrete with marble slurry and fly ash: Statistical modeling, microstructural investigations, and rheological characterization", Journal of Building Engineering, 94, 109785, (2024). https://doi.org/10.1016/j.jobe.2024.109785
  • [44] Correia, J. R., Almeida, N. M., and Figueira, J. R., "Recycling of FRP composites: reusing fine GFRP waste in concrete mixtures", Journal of Cleaner Production, 19(15): 1745-1753, (2011). https://doi.org/10.1016/j.jclepro.2011.05.018
  • [45] Pelisser, F., Zavarise, N., Longo, T. A., and Bernardin, A. M., "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", Journal of Cleaner Production, 19(6): 757-763, (2011). https://doi.org/10.1016/j.jclepro.2010.11.014
  • [46] Shah, W., "Life cycle assessment of marble industry for cleaner production technology as a pollution prevention measure", PhD diss., Ph. D thesis submitted to the University of Peshawar, Pakistan, (2016).
  • [47] Çimen, H. and Çinar, S. M., "Energy consumption analysis in marble cutting processing", International Symposium on Sustainable Development, Sarajevo, Bosna/Hercegovina. pp. 1-6, (2009).
  • [48] Çelik, M. Y., and Tur Ş., "Afyonkarahisar Organize Sanayi Bölgesi Doğal Taş Atık Depolama Sahasındaki Mermer Atıklarının Özelliklerinin İncelenmesi", Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2): 9-15, (2012).
  • [49] Çakır, M., "İscehisar ilçesinde mermer sanayisi ve planlama önerileri", MS thesis. Sosyal Bilimler Enstitüsü, (2014).
  • [50] Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., and Pennington, D. W., "Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications", Environment International, 30(5): 701-720, (2004). https://doi.org/10.1016/j.envint.2003.11.005
  • [51] Ahmad, T., Hussain, M., Iqbal, M., Ali, A., Manzoor, W., Bibi, H., ... and Shams, D. F., "Environmental, energy, and water footprints of marble tile production chain in a life cycle perspective", Sustainability, 14(14): 8325, (2022). https://doi.org/10.3390/su14148325
  • [52] Pre-sustainability. "SIMAPRO LCA software for informed change-makers", (2021). http://pre-sustainability. com/solutions/tools/simapro/.
  • [53] Pauer, E., Wohner, B., and Tacker, M. "The influence of database selection on environmental impact results. Life cycle assessment of packaging using gabi, ecoinvent 3.6, and the environmental footprint database”, Sustainability, 12(23): 9948, 1-15, (2020). https://doi.org/10.3390/su12239948
  • [54] Silva, D. A. L., Nunes, A. O., Piekarski, C. M., da Silva Moris, V. A., de Souza, L. S. M., and Rodrigues, T. O. "Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem”, Sustainable Production and Consumption, 20: 304-315, (2019). https://doi.org/10.1016/j.spc.2019.07.005
  • [55] Ciroth, A. "ICT for environment in life cycle applications openLCA—A new open-source software for life cycle assessment", The International Journal of Life Cycle Assessment, 12: 209-210, (2007). https://doi.org/10.1065/lca2007.06.337
  • [56] Vásquez, M., Vásquez-Ibarra, L., Musule, R., and Iriarte, A. "Carbon footprint of wooden and plastic pallets: A quantification with different software tools”, Maderas. Ciencia y Tecnología, 24, (2022). http://dx.doi.org/10.4067/s0718-221x2022000100445
  • [57] Güller, S., and Balcı, A. "Muğla Atıksu Arıtma Tesisi Karbon Ayak İzinin Değerlendirilmesi", Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22: 547-555, (2018).
  • [58] Üçtuğ, F. G., Atluğkoyun, A. İ., and İnaltekin, M. "Environmental life cycle assessment of yoghurt supply to consumer in Turkey”, Journal of Cleaner Production, 215: 1103-1111, (2019). https://doi.org/10.1016/j.jclepro.2019.01.127
  • [59] Amin, M. R., Mahmud, A., and Anannya, F. R. "Assessment of carbon footprint of various cotton knitwear production processes in Bangladesh”, The American Association of Textile Chemists and Colorists’ (AATCC) Journal of Research, 8(6): 47-57, (2021). https://doi.org/10.14504/ajr.8.6.6
  • [60] Thapa, P., Hasnine, M. T., Zoungrana, A., Thakur, S., and Yuan, Q. "Food waste treatments and the impact of composting on carbon footprint in Canada", Fermentation, 8(10): 566, (2022). https://doi.org/10.3390/fermentation8100566
  • [61] Khan, M. I., Islam, M. T., Wang, L., and Padhye, R. "Comparative energy demand and carbon footprint analysis of textile waste management systems in Australia”, Environmental Science and Pollution Research, 1-18, (2025). https://doi.org/10.1007/s11356-025-36200-1
  • [62] Traverso, M., Rizzo, G., and Finkbeiner, M., "Environmental performance of building materials: life cycle assessment of a typical Sicilian marble", The International Journal of Life Cycle Assessment, 15: 104-114, (2010). https://doi.org/10.1007/s11367-009-0135-z
  • [63] Zani, M. C., Pasolini, M., Pinheiro, S. M. D. M., Gomes, V. and Silva, M. G. D., "Compressive strength and environmental performance of blended cements with waste marble dust", Revista Ibracon de Estruturas e Materiais, 17, e17101, (2023). https://doi.org/10.1590/S1983-41952024000100001
  • [64] ISO, 2006. "ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines", Geneva, Switzerland; p. 46, (2006).
  • [65] The University of Manchester, "CCaLC2 for Windows Manual (V1.1)", (2016). http://www.ccalc.org.uk/downloads/Manual_CCaLC2.pdf. Accessed 20/03/2025.
  • [66] The University of Manchester, "New and updated databases", (2025). http://www.ccalc.org.uk/ccalc2.php. Accessed 20/03/2025.
  • [67] Al Zboon, K. and Tahat, M., "Recycling of stone cutting waste in floor tiles production", International Journal of Theoretical and Applied Sciences, 1(1): 64-71, (2009).
  • [68] Bostancı, S. C., "Use of waste marble dust and recycled glass for sustainable concrete production", Journal of Cleaner Production, 251, 119785, (2020). https://doi.org/10.1016/j. Jclepro.2019.119785
  • [69] Bilir, T., Karadağ, Ö. and Aygün, B. F., "Waste marble powder", Sustainable Concrete Made with Ashes and Dust from Different Sources. Woodhead Publishing, 479-506, (2022). https://doi.org/10.1016/B978-0-12-824050-2.00015-2
  • [70] Nayak, S. K., Satapathy, A., and Mantry, S., "Use of waste marble and granite dust in structural applications: A review", Journal of Building Engineering, 46, 103742, (2022). https://doi.org/10.1016/ j. jobe.2021.103742
  • [71] Dhanapandian, S., Gnanavel, B. and Ramkumar, T., "Utilization of granite and marble sawing powder wastes as brick materials", Carpathian Journal of Earth and Environmental Sciences, 4(2): 147–160, (2009).
  • [72] Ünal, O. and Kibici, Y., "Mermer Tozu Atıklarının Beton Üretiminde Kullanılmasının Araştırılması", Türkiye III. Mermer Sempozyumu. Afyon, Bildiriler Kitabı: 317-325, (2001).
  • [73] Topçu, İ. B., Ünal, O. and Uygunoğlu, T., "Kendiliğinden yerleşen betonda mineral katkıların taze beton özeliklerine etkilerinin araştırılması", Yapıda Kimyasal Katkılar Sempozyumu, 23(24): 181-193, (2007). https://doi.org/10.19113/sdufbed.46877
  • [74] Ünal, O. and Uygunoglu, T., "Atık Mermer Tozu Katkılı Betonların Donma-Çözülme Etkisinde Mekanik Özelliklerinin Araştırılması", Türkiye IV. Mermer Sempozyumu (Mersem'2003) Bildiriler Kitabı. 18-19, Aralık (2003).
  • [75] Çınar, S. M., "Optimization of Electric Energy Consumption in Marble Cutting Machines", Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (In Turkish), (2007).
  • [76] Oza, R. B., Kangda, M. Z., Agrawal, M. R., Vakharia, P. R., and Solanki, D. M., "Marble dust as a binding material in concrete: A review", Materials Today: Proceedings, 60: 421-430, (2022). https://doi.org/10.1016/j.matpr.2022.01.278
  • [77] Orozco, C. R., Tangtermsirikul, S., Sugiyama, T., and Babel, S., "Comparative environmental assessment of low and high CaO fly ash in mass concrete mixtures for enhanced sustainability: Impact of fly ash type and transportation", Environmental Research, 234, 116579, (2023). https://doi.org/10.1016/j.envres.2023.116579
  • [78] Sánchez, A. R., Ramos, V. C., Polo, M. S., Ramón, M. V. L., and Utrilla, J. R., "Life cycle assessment of cement production with marble waste sludges", International Journal of Environmental Research and Public Health, 18(20): 10968, (2021). https://doi.org/10.3390/ijerph182010968
  • [79] Toubal Seghir, N., Mellas, M., Sadowski, Ł., Krolicka, A., Żak, A., and Ostrowski, K., "The utilization of waste marble dust as a cement replacement in air-cured mortar", Sustainability, 11(8): 2215, (2019). https://doi.org/10.3390/su11082215
  • [80] İnce, C., Hamza, A., Derogar, S., and Ball, R. J., "Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete", Journal of Cleaner Production, 270, 122213, (2020). https://doi.org/10.1016/j.jclepro.2020.122213
  • [81] Arel, H. Ş., "Recyclability of waste marble in concrete production", Journal of Cleaner Production, 131: 179-188, (2016). https://doi.org/10.1016/j.jclepro.2016.05.052
  • [82] Yılmaz, N. G. and Göktan, R. M., "Effect of sawing rate on force and energy requirements in the circular sawing of granites", Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 21(2): 59-74, (2008).

Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1464228

Abstract

The marble industry can cause significant environmental impacts due to quarrying, transportation, and shaping of marble. Marble extraction can disrupt the ecological balance of the mining area, from visual and noise pollution to surface and groundwater and agricultural land contamination due to the marble waste. In particular, waste marble dust (WMD) can be carried by the wind into residential areas and cause pollution. However, it can be used directly and recycled in the construction materials. This approach can have many environmental and economic benefits with the production of construction materials. On the other hand, the use of WMD as a substitute material in the construction sector was mainly analyzed for durability, workability, and strength; also, it can be a convenient option as a filler, but the environmental assessment of its use as a filler concrete is limited. This study evaluates using WMD by substituting different proportions of cement and fly ash (FA) in self-compacting concrete. CCaLC2 software was used in a cradle-to-gate assessment. When the amount of WMD used increases from 50 to 200 kg/m3, carbon footprint, acidification, eutrophication, photochemical smog, and human toxicity potentials of the raw materials increases 1,80%,236,97%, 26,48%, 221,48%, 102,22%, respectively. Considering the location of the marble mine and the marble waste storage area, using WMD instead of FA and cement in concrete can save environmental pollution from the clinker process in cement production. In addition, the transport of WMD can be seen as an economical alternative due to its low bulk density and reduced landfill.

References

  • [1] Environment, U. N., Scrivener, K. L., John, V. M., and Gartner, E. M., "Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”, Cement and Concrete Research, 114: 2-26, (2018). https://doi.org/10.1016/j.cemconres.2018.03.015
  • [2] Şenol, A. F. and Karakurt, C., "Atık Mermer Tozunun Çimento Harçlarının Dayanım Özelliklerine Etkisi", International Conference on Frontiers in Academic Research, Vol. 1, 427-431, (2023). https://as-proceeding.com/index.php/icfar/article/view/142
  • [3] Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A. and Scrivener, K. L., "Environmental impacts and decarbonization strategies in the cement and concrete industries", Nature Reviews Earth and Environment, 1(11): 559-573, (2020). https://doi.org/10.1038/s43017-020-0093-3
  • [4] Nasr, M. S., Ali, I. M., Hussein, A. M., Shubbar, A. A., Kareem, Q. T. and AbdulAmeer, A. T., "Utilization of locally produced waste in the production of sustainable mortar", Case Studies in Construction Materials, 13: e00464, (2020). https://doi.org/10.1016/j.cscm.2020.e00464
  • [5] Díaz, Y. C., Berriel, S. S., Heierli, U., Favier, A. R., Machado, I. R. S., Scrivener, K. L., ... and Habert, G., "Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies", Development Engineering, 2: 82-91, (2017). https://doi.org/10.1016/j.deveng.2017.06.001
  • [6] Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S. and Dutta, S. C., "A critical review and assessment for usage of recycled aggregate as sustainable construction material", Construction and Building Materials, 131: 721-740, (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.029
  • [7] Nasr, M. S., Salman, A. J., Ghayyib, R. J., Shubbar, A., Al-Mamoori, S., Al-khafaji, Z., ... and Sadique, M., "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment", Energies, 16(12): 4587, (2023). https://doi.org/10.3390/en16124587
  • [8] Ahmad, J., Zhou, Z., and Deifalla, A. F., "Self-Compacting Concrete with Partially Substitution of Waste Marble: A Review", International Journal of Concrete Structures and Materials, 17(1): 1-24, (2023). https://doi.org/10.1186/s40069-023-00585-5
  • [9] Letelier, V., Henríquez-Jara, B. I., Manosalva, M., Parodi, C., and Ortega, J. M., "Use of waste glass as a replacement for raw materials in mortars with a lower environmental impact", Energies, 12(10): 1974, (2019). https://doi.org/10.3390/en12101974
  • [10] Adesina, A., "Recent advances in the concrete industry to reduce its carbon dioxide emissions”, Environmental Challenges, 1: 100004, (2020). https://doi.org/10.1016/j.envc.2020.100004
  • [11] Tayeh, B. A., Hadzima-Nyarko, M., Zeyad, A. M. and Al-Harazin, S. Z., "Properties and durability of concrete with olive waste ash as a partial cement replacement", Advances in Concrete Construction, 11(1): 59-71, (2021). https://doi.org/10.12989/acc.2021.11.1.059
  • [12] Shubbar, AAF, Jafer, HM, Dulaimi, AFD, Atherton, W. and Al-Rifaie, A., " The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash", International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 11(7): 905-908. ISSN 1307-6892, (2017). https://doi.org/10.1999/1307-6892/10007584
  • [13] Atef, M., Bassioni, G., Azab, N. and Abdellatif, M. H., "Assessment of cement replacement with fine recycled rubber particles in sustainable cementitious composites", Journal of the Mechanical Behaviour of Materials, 30(1): 59-65, (2021). https://doi.org/10.1515/jmbm-2021-0007
  • [14] Hamad, M. A., Nasr, M., Shubbar, A., Al-Khafaji, Z., Al Masoodi, Z., Al-Hashimi, O., ... and Hashim, K., "Production of ultra-high-performance concrete with low energy consumption and carbon footprint using supplementary cementitious materials instead of silica fume: A review", Energies, 14(24): 8291, (2021). https://doi.org/10.3390/en14248291
  • [15] Hawileh, R. A., Abdalla, J. A., Fardmanesh, F., Shahsana, P. and Khalili, A., "Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement", Archives of Civil and Mechanical Engineering, 17: 511-519, (2017). https://doi.org/10.1016/j.acme.2016.11.006
  • [16] Coelho, F. Z., Zulcão, R., Calmon, J. L. and Vieira, D. R., "Cradle-to-gate life cycle assessment of self-compacting concrete incorporating alternative materials: a case study", Revista Principia-Divulgação Científica e Tecnológica do IFPB, 48: 70-84, (2020).
  • [17] Kubba, H. Z., Nasr, M. S., Al-Abdaly, N. M., Dhahir, M. K. and Najim, W. N., "Influence of incinerated and non-incinerated waste paper on properties of cement mortar", IOP Conference Series: Materials Science and Engineering, Vol. 671. No. 1. IOP Publishing, (2020, January). https://doi.org/10.1088/1757-899X/671/1/012113
  • [18] Sakir, S., Raman, S. N., Safiuddin, M., Kaish, A. A. and Mutalib, A. A., "Utilization of by-products and wastes as supplementary cementitious materials in structural mortar for sustainable construction", Sustainability, 12(9): 3888, (2020). https://doi.org/10.3390/su12093888
  • [19] Adetoye Olubunmi, A., Aliyu, S. and Hassan, I., "Suitability of using Marble Dust Powder and Rice Husk Ash in Production of Self-Compacting Concrete: A Review", International Journal of Multidisciplinary Research in Science, Engineering and Technology, (2023). https://doi.org/10.15680/IJMRSET.2023.0609001
  • [20] Poppe, A. M. and De Schutter, G., "Cement hydration in the presence of high filler contents", Cement and Concrete Research, 35(12): 2290-2299, (2005). https://doi.org/10.1016/j.cemconres.2005.03.008
  • [21] Ye, G., Liu, X., De Schutter, G., Poppe, A. M. and Taerwe, L., "Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes", Cement and Concrete Composites, 29(2): 94-102, 2582-7219, (2007). https://doi.org/10.1016/j.cemconcomp.2006.09.003
  • [22] Topcu, I. B., Bilir, T. and Uygunoğlu, T., "Effect of waste marble dust content as filler on properties of self-compacting concrete", Construction and Building Materials, 23(5): 1947-1953, (2009). https://doi.org/10.1016/j.conbuildmat.2008.09.007
  • [23] Zhao, H., Sun, W., Wu, X. and Gao, B., "The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures", Journal of Cleaner Production, 95: 66-74, (2015). https://doi.org/10.1016/j.jclepro.2015.02.050
  • [24] Ruiz-Sánchez, A., Sánchez, M., Zaror, C. A., Vega, M. I. and Muñoz, C. M., "Greenhouse gases in the production of cement using marble dust as raw material", Construction and Building Research, Springer Netherlands, 435-441: (2014). https://doi.org/10.1007/978-94-007-7790-3_53
  • [25] Özata, G., "Mermer ve Polietilentreftalat (PET) Atıklarının Yapı Malzemesi Olarak Geri Dönüşümü", (Doctoral dissertation, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyon, 8-13, (2009).
  • [26] Bonavetti, V., Donza, H., Menendez, G., Cabrera, O. and Irassar, E. F., "Limestone filler cement in low w/c concrete: A rational use of energy", Cement and Concrete Research, 33(6): 865-871, (2003). https://doi.org/10.1016/S0008-8846(02)01087-6
  • [27] Yahia, A., Tanimura, M. and Shimoyama, Y., "Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio", Cement and Concrete Research, 35(3): 532-539, (2005). https://doi.org/10.1016/j.cemconres.2004.05.008
  • [28] Assie, S., Escadeillas, G. and Waller, V., "Estimates of self-compacting concrete ‘potential’durability", Construction and Building Materials, 21(10): 1909-1917, (2007). https://doi.org/10.1016/j.conbuildmat.2006.06.034
  • [29] Benjeddou, O., Alyousef, R., Mohammadhosseini, H., Soussi, C., Khadimallah, M. A., Alabduljabbar, H. and Tahir, M. M., "Utilisation of waste marble powder as low-cost cementing materials in the production of mortar", Journal of Building Engineering, 32, 101642, (2020). https://doi.org/10.1016/j.jobe.2020.101642
  • [30] Liguori, V., Rizzo, G., and Traverso, M., "Marble quarrying: an energy and waste intensive activity in the production of building materials", WIT Transactions on Ecology and the Environment, 108, 197-207, (2008). https://doi.org/10.2495/EEIA080201
  • [31] Sufian, M., Ullah, S., Ostrowski, K.A., Ahmad, A., Zia, A., ´Sliwa-Wieczorek, K., Awan, A. A., "An Experimental and Empirical Study on The Use of Waste Marble Powder in Construction Material", Materials, 14 (14): 3829, (2021). https://doi.org/10.3390/ ma14143829
  • [32] Kuoribo, E. and Mahmoud, H., "Utilisation of Waste Marble Dust in Concrete Production: A Scientometric Review and Future Research Directions", Journal of Cleaner Production, 133872, (2022). https://doi.org/10.1016/j.jclepro.2022.133872
  • [33] Saygılı, A. "Use of Waste Marble Dust for Stabilization of Clayey Soil", Materials Science, 21(4): 601-606, (2015). https://doi.org/10.5755/j01.ms.21.4.11966
  • [34] Arsoy, Z., Çiftçi, H., Ersoy, B., Uygunoğlu, T., and Arslan, B.,"Afyonkarahisar Bölgesi Mermer Parça Atıklarının Beton Agregası Olarak Değerlendirilebilirliğinin Araştırılması", El-Cezeri, 6(3): 503-516, (2019). https://doi.org/10.31202/ecjse.554339
  • [35] Usta, M., "Atık Mermer Tozunun Zeminlerin Serbest Basınç Dayanımına Etkisi", (Master's thesis). Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyon, (2004).
  • [36] Idrees, M., and Jamil, S. "Effect of Rice Husk Ash and Marble Powder on Mechanical Behaviour of Concrete", Fifth International Conference on Sustainable Construction Materials and Technologies, (July 2019). https://doi.org/10.18552/2019/IDSCMT5042
  • [37] Ashish, D. K., Verma, S. K., Kumar, R. and Sharma, N. "Properties of Concrete Incorporating Sand and Cement with Waste Marble Powder", Advances in Concrete Construction, 4(2): 145, (2016). DOI: http://dx.doi.org/10.12989/acc.2016.4.2.145
  • [38] Anjaneyulu, G. and Rao, M. S., "An Experimental Analysis of Strength Characteristics of Concrete Using Partial Replacement of Cement by Granite Dust and Marble Dust", Anveshana’s International Journal Research in Engineering and Applied Sciences, Volume 2, Issue 5. ISSN-2455-6300, (2017, May).
  • [39] Ruiz-Sánchez, A., Sánchez-Polo, M., and Rozalen, M., "Waste marble dust: An interesting residue to produce cement", Construction and Building Materials, 224: 99-108, (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.031
  • [40] Krishnan, S., Kanaujia, S. K., Mithia, S., and Bishnoi, S., "Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay", Construction and Building Materials, 164: 265-274, (2018).https://doi.org/10.1016/j.conbuildmat.2017.12.240
  • [41] Özkılıç, Y. O., Zeybek, Ö., Bahrami, A., Çelik, A. İ., Mydin, M. A. O., Karalar, M., ... and Jagadesh, P., "Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete", Journal of Materials Research and Technology, 25: 4799-4819, (2023). https://doi.org/10.1016/j.jmrt.2023.06.126
  • [42] Sharma, S., Pastariya, S. and Verma, G. K., "Experimental Investigation on Partial Replacement of Cement with Marble Dust Powder on Properties of Concrete", International Journal of Software and Hardware Research in Engineering, ISSN-2347-4890. Volume 5 Issue 9, (2017).
  • [43] Verma, P., Kumar, R., Mukherjee, S., and Sharma, M., "Sustainable self-compacting concrete with marble slurry and fly ash: Statistical modeling, microstructural investigations, and rheological characterization", Journal of Building Engineering, 94, 109785, (2024). https://doi.org/10.1016/j.jobe.2024.109785
  • [44] Correia, J. R., Almeida, N. M., and Figueira, J. R., "Recycling of FRP composites: reusing fine GFRP waste in concrete mixtures", Journal of Cleaner Production, 19(15): 1745-1753, (2011). https://doi.org/10.1016/j.jclepro.2011.05.018
  • [45] Pelisser, F., Zavarise, N., Longo, T. A., and Bernardin, A. M., "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", Journal of Cleaner Production, 19(6): 757-763, (2011). https://doi.org/10.1016/j.jclepro.2010.11.014
  • [46] Shah, W., "Life cycle assessment of marble industry for cleaner production technology as a pollution prevention measure", PhD diss., Ph. D thesis submitted to the University of Peshawar, Pakistan, (2016).
  • [47] Çimen, H. and Çinar, S. M., "Energy consumption analysis in marble cutting processing", International Symposium on Sustainable Development, Sarajevo, Bosna/Hercegovina. pp. 1-6, (2009).
  • [48] Çelik, M. Y., and Tur Ş., "Afyonkarahisar Organize Sanayi Bölgesi Doğal Taş Atık Depolama Sahasındaki Mermer Atıklarının Özelliklerinin İncelenmesi", Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2): 9-15, (2012).
  • [49] Çakır, M., "İscehisar ilçesinde mermer sanayisi ve planlama önerileri", MS thesis. Sosyal Bilimler Enstitüsü, (2014).
  • [50] Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., and Pennington, D. W., "Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications", Environment International, 30(5): 701-720, (2004). https://doi.org/10.1016/j.envint.2003.11.005
  • [51] Ahmad, T., Hussain, M., Iqbal, M., Ali, A., Manzoor, W., Bibi, H., ... and Shams, D. F., "Environmental, energy, and water footprints of marble tile production chain in a life cycle perspective", Sustainability, 14(14): 8325, (2022). https://doi.org/10.3390/su14148325
  • [52] Pre-sustainability. "SIMAPRO LCA software for informed change-makers", (2021). http://pre-sustainability. com/solutions/tools/simapro/.
  • [53] Pauer, E., Wohner, B., and Tacker, M. "The influence of database selection on environmental impact results. Life cycle assessment of packaging using gabi, ecoinvent 3.6, and the environmental footprint database”, Sustainability, 12(23): 9948, 1-15, (2020). https://doi.org/10.3390/su12239948
  • [54] Silva, D. A. L., Nunes, A. O., Piekarski, C. M., da Silva Moris, V. A., de Souza, L. S. M., and Rodrigues, T. O. "Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem”, Sustainable Production and Consumption, 20: 304-315, (2019). https://doi.org/10.1016/j.spc.2019.07.005
  • [55] Ciroth, A. "ICT for environment in life cycle applications openLCA—A new open-source software for life cycle assessment", The International Journal of Life Cycle Assessment, 12: 209-210, (2007). https://doi.org/10.1065/lca2007.06.337
  • [56] Vásquez, M., Vásquez-Ibarra, L., Musule, R., and Iriarte, A. "Carbon footprint of wooden and plastic pallets: A quantification with different software tools”, Maderas. Ciencia y Tecnología, 24, (2022). http://dx.doi.org/10.4067/s0718-221x2022000100445
  • [57] Güller, S., and Balcı, A. "Muğla Atıksu Arıtma Tesisi Karbon Ayak İzinin Değerlendirilmesi", Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22: 547-555, (2018).
  • [58] Üçtuğ, F. G., Atluğkoyun, A. İ., and İnaltekin, M. "Environmental life cycle assessment of yoghurt supply to consumer in Turkey”, Journal of Cleaner Production, 215: 1103-1111, (2019). https://doi.org/10.1016/j.jclepro.2019.01.127
  • [59] Amin, M. R., Mahmud, A., and Anannya, F. R. "Assessment of carbon footprint of various cotton knitwear production processes in Bangladesh”, The American Association of Textile Chemists and Colorists’ (AATCC) Journal of Research, 8(6): 47-57, (2021). https://doi.org/10.14504/ajr.8.6.6
  • [60] Thapa, P., Hasnine, M. T., Zoungrana, A., Thakur, S., and Yuan, Q. "Food waste treatments and the impact of composting on carbon footprint in Canada", Fermentation, 8(10): 566, (2022). https://doi.org/10.3390/fermentation8100566
  • [61] Khan, M. I., Islam, M. T., Wang, L., and Padhye, R. "Comparative energy demand and carbon footprint analysis of textile waste management systems in Australia”, Environmental Science and Pollution Research, 1-18, (2025). https://doi.org/10.1007/s11356-025-36200-1
  • [62] Traverso, M., Rizzo, G., and Finkbeiner, M., "Environmental performance of building materials: life cycle assessment of a typical Sicilian marble", The International Journal of Life Cycle Assessment, 15: 104-114, (2010). https://doi.org/10.1007/s11367-009-0135-z
  • [63] Zani, M. C., Pasolini, M., Pinheiro, S. M. D. M., Gomes, V. and Silva, M. G. D., "Compressive strength and environmental performance of blended cements with waste marble dust", Revista Ibracon de Estruturas e Materiais, 17, e17101, (2023). https://doi.org/10.1590/S1983-41952024000100001
  • [64] ISO, 2006. "ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines", Geneva, Switzerland; p. 46, (2006).
  • [65] The University of Manchester, "CCaLC2 for Windows Manual (V1.1)", (2016). http://www.ccalc.org.uk/downloads/Manual_CCaLC2.pdf. Accessed 20/03/2025.
  • [66] The University of Manchester, "New and updated databases", (2025). http://www.ccalc.org.uk/ccalc2.php. Accessed 20/03/2025.
  • [67] Al Zboon, K. and Tahat, M., "Recycling of stone cutting waste in floor tiles production", International Journal of Theoretical and Applied Sciences, 1(1): 64-71, (2009).
  • [68] Bostancı, S. C., "Use of waste marble dust and recycled glass for sustainable concrete production", Journal of Cleaner Production, 251, 119785, (2020). https://doi.org/10.1016/j. Jclepro.2019.119785
  • [69] Bilir, T., Karadağ, Ö. and Aygün, B. F., "Waste marble powder", Sustainable Concrete Made with Ashes and Dust from Different Sources. Woodhead Publishing, 479-506, (2022). https://doi.org/10.1016/B978-0-12-824050-2.00015-2
  • [70] Nayak, S. K., Satapathy, A., and Mantry, S., "Use of waste marble and granite dust in structural applications: A review", Journal of Building Engineering, 46, 103742, (2022). https://doi.org/10.1016/ j. jobe.2021.103742
  • [71] Dhanapandian, S., Gnanavel, B. and Ramkumar, T., "Utilization of granite and marble sawing powder wastes as brick materials", Carpathian Journal of Earth and Environmental Sciences, 4(2): 147–160, (2009).
  • [72] Ünal, O. and Kibici, Y., "Mermer Tozu Atıklarının Beton Üretiminde Kullanılmasının Araştırılması", Türkiye III. Mermer Sempozyumu. Afyon, Bildiriler Kitabı: 317-325, (2001).
  • [73] Topçu, İ. B., Ünal, O. and Uygunoğlu, T., "Kendiliğinden yerleşen betonda mineral katkıların taze beton özeliklerine etkilerinin araştırılması", Yapıda Kimyasal Katkılar Sempozyumu, 23(24): 181-193, (2007). https://doi.org/10.19113/sdufbed.46877
  • [74] Ünal, O. and Uygunoglu, T., "Atık Mermer Tozu Katkılı Betonların Donma-Çözülme Etkisinde Mekanik Özelliklerinin Araştırılması", Türkiye IV. Mermer Sempozyumu (Mersem'2003) Bildiriler Kitabı. 18-19, Aralık (2003).
  • [75] Çınar, S. M., "Optimization of Electric Energy Consumption in Marble Cutting Machines", Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (In Turkish), (2007).
  • [76] Oza, R. B., Kangda, M. Z., Agrawal, M. R., Vakharia, P. R., and Solanki, D. M., "Marble dust as a binding material in concrete: A review", Materials Today: Proceedings, 60: 421-430, (2022). https://doi.org/10.1016/j.matpr.2022.01.278
  • [77] Orozco, C. R., Tangtermsirikul, S., Sugiyama, T., and Babel, S., "Comparative environmental assessment of low and high CaO fly ash in mass concrete mixtures for enhanced sustainability: Impact of fly ash type and transportation", Environmental Research, 234, 116579, (2023). https://doi.org/10.1016/j.envres.2023.116579
  • [78] Sánchez, A. R., Ramos, V. C., Polo, M. S., Ramón, M. V. L., and Utrilla, J. R., "Life cycle assessment of cement production with marble waste sludges", International Journal of Environmental Research and Public Health, 18(20): 10968, (2021). https://doi.org/10.3390/ijerph182010968
  • [79] Toubal Seghir, N., Mellas, M., Sadowski, Ł., Krolicka, A., Żak, A., and Ostrowski, K., "The utilization of waste marble dust as a cement replacement in air-cured mortar", Sustainability, 11(8): 2215, (2019). https://doi.org/10.3390/su11082215
  • [80] İnce, C., Hamza, A., Derogar, S., and Ball, R. J., "Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete", Journal of Cleaner Production, 270, 122213, (2020). https://doi.org/10.1016/j.jclepro.2020.122213
  • [81] Arel, H. Ş., "Recyclability of waste marble in concrete production", Journal of Cleaner Production, 131: 179-188, (2016). https://doi.org/10.1016/j.jclepro.2016.05.052
  • [82] Yılmaz, N. G. and Göktan, R. M., "Effect of sawing rate on force and energy requirements in the circular sawing of granites", Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 21(2): 59-74, (2008).
There are 82 citations in total.

Details

Primary Language English
Subjects Climate Change Impacts and Adaptation (Other)
Journal Section Research Article
Authors

Pelin Sertyeşilışık 0000-0003-4047-3614

Tayfun Uygunoğlu 0000-0003-4382-8257

Early Pub Date October 29, 2025
Publication Date November 6, 2025
Submission Date April 3, 2024
Acceptance Date September 10, 2025
Published in Issue Year 2025 Early View

Cite

APA Sertyeşilışık, P., & Uygunoğlu, T. (2025). Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1464228
AMA Sertyeşilışık P, Uygunoğlu T. Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust. Gazi University Journal of Science. Published online October 1, 2025:1-1. doi:10.35378/gujs.1464228
Chicago Sertyeşilışık, Pelin, and Tayfun Uygunoğlu. “Environmental Impact Assessment of Self-Compacting Concrete Made With Marble Dust”. Gazi University Journal of Science, October (October 2025), 1-1. https://doi.org/10.35378/gujs.1464228.
EndNote Sertyeşilışık P, Uygunoğlu T (October 1, 2025) Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust. Gazi University Journal of Science 1–1.
IEEE P. Sertyeşilışık and T. Uygunoğlu, “Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust”, Gazi University Journal of Science, pp. 1–1, October2025, doi: 10.35378/gujs.1464228.
ISNAD Sertyeşilışık, Pelin - Uygunoğlu, Tayfun. “Environmental Impact Assessment of Self-Compacting Concrete Made With Marble Dust”. Gazi University Journal of Science. October2025. 1-1. https://doi.org/10.35378/gujs.1464228.
JAMA Sertyeşilışık P, Uygunoğlu T. Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust. Gazi University Journal of Science. 2025;:1–1.
MLA Sertyeşilışık, Pelin and Tayfun Uygunoğlu. “Environmental Impact Assessment of Self-Compacting Concrete Made With Marble Dust”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1464228.
Vancouver Sertyeşilışık P, Uygunoğlu T. Environmental Impact Assessment of Self-Compacting Concrete made with Marble Dust. Gazi University Journal of Science. 2025:1-.