A Comparative Study of Two Types of Axial Flux Generators Associated with a Wind Turbine Prototype Using 3D FEM
Year 2025,
Early View, 1 - 1
Faradji Boubakar
,
Aissa Ameur
Abstract
This research focuses on harnessing wind energy in remote areas to generate electricity using specialized wind turbines. A comparative study was carried out between two types of turbines—vertical and horizontal—to produce small-scale electrical energy. To facilitate this study, prototypes of both turbine types were developed and tested in the research laboratory. The electrical generators employed were Axial Flux Permanent Magnet Generators (AFPMG), which included two variants: single-side AFPMG and double-side AFPMG.
Given the working principles of axial flux generators, three-dimensional simulations utilizing finite element analysis were performed to monitor variations in the magnetic field across all directions. In the next phase of the research, fully assembled turbines underwent initial testing, with their performance compared against each other. The results of these experiments were analyzed comparatively, leading to several important findings that contribute valuable insights to this domain.
References
- [1] Vukadinović, D., and Bašić, M., “A stand-alone inductıon generator wıth improved stator flux orıented control”, Journal of Electrical Engineering, 62(2): 65-72, (2011).
- [2] Soued, S., Ramadan, H.S., and Becherif, M., “Effect of doubly fed induction generator on transient stability analysis under fault conditions”, Journal of Energy Procedia, 162(1): 315-324, (2019).
- [3] Stuebig, C., Seibel, A., Schleicher, K., Haberjan, L., Kloepzig, M., and Ponick, B., “Electromagnetic design of a 10 MW permanent magnet synchronous generator for wind turbine application”, IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'alene ID USA, 10-13, (2015).
- [4] Karthikeyan, S., and Ramakrishnan, C., “A hybrid fuzzy logic-based MPPT algorithm for PMSG-based variable speed wind energy conversion system on a smart grid”, Journal Energy Storage and Saving, 3(4): 295-304, (2024).
- [5] Hossam, H.H.M., Abdel Raheem, Y., and Essam, E.M.M., “Modifed P&O MPPT algorithm for optimal power extraction of five phase PMSG based wind generation system”, Journal SN Applied Sciences, 1(838), (2019).
- [6] Marwa, M., Ahmed, A., Wael, S., Hassanein, B., Nadia, A., Elsonbaty, C., and Mohamed, A., “Enany proposing and evaluation of MPPT algorithms for high-performance stabilized wind turbine driven DFIG”, Journal Alexandria Engineering, 59(6): 5135-5146, (2020).
- [7] Chen, Y.J., Tsai, Y.F., Huang,C.C., Li, M.H., and Hsiao, F.B., “The design and analysis of passive pitch control for horizontal axis wind turbine”, Journal Energy Procedia, 61(1): 683-686, (2014).
- [8] Gambuzza, S., Sunil, P., Felli, M., Anna, M. Y., Broglia, R.,McCarthy, E. D., and Viola, I. M., “Power and thrust control by passive pitch for tidal turbines”, Journal Renewable Energy 239(121921), (2025).
- [9] Apata, O., and Oyedokun, D.T.O., “An overview of control techniques for wind turbine systems” Journal Scientific African, 10(e00566), (2020).
- [10] Nurmalia, A., Hadi, W., and Cahyadi, W., “Performance test of three-phase brushless direct current motor axial flux with differences diameter of neodymium type permanent magnet”, Journal ELKHA, 13(1), (2021).
- [11] Nishanth, F., Verdeghem, J.V., and Severson, E.L., “A Review of axial flux permanent magnet machine technology”, IEEE Transactions on Industry Applications, 59(4): 1-14, (2023).
- [12] Ketut, W., and Chun-Yu, H., “Performances comparison of axial-flux permanent magnet et generators for small-scale vertical-axis wind turbine”, Alexandria Engineering Journal, 61: 1201-1215, (2022).
- [13] Bo, Z., Torsten, E., Martin, D., and Matthias, G., “A comparison of the transverse, axial and radial flux PM synchronous motors for electric vehicle”, IEEE International Electric Vehicle Conference (IEVC), Florence,17-19, (2014).
- [14] Hao, Z., Ma, Y., Wang, P., Luo, G., Chen, Y., “A review of axial-flux permanent-magnet motors: topological structures, design, optimization and control techniques”, Journal MDPI Machines, 10(1178), (2022).
- [15] Wang, H., Zeng, X., Eastham, J.F., and Pei, X., “Axial flux permanent magnet motor topologies magnetic performance comparison”, Journal MDPI Energies, 17(401), (2024).
- [16] Ebrahimi, H., Torkaman, H., and Javadi, H., “Simultaneous improvement of cogging torque and torque density in axial flux‐switching permanent magnet motor”, IET Electric Power Applications, 18(3): 312-324, (2024).
- [17] Tayfun, G., “Torque capability comparison of induction and interior permanent magnet machines for traction”, Gazi University Journal of Science, 36(2): 675-691, (2023).
- [18] Credo, A., Tursini, M., Villani, M., Di Lodovico, C., Orlando, M., and Frattari, F., “Axial flux pm in-wheel motor for electric vehicles: 3D multiphysics analysis”, Journal MDPI Energies, 14(2107), (2021).
- [19] Hamza, A.S., Sajjad, H.Z., and Farhan, K., “A comparative study on different motors used ın electric vehicles”, Journal of Independent Studies and Researc-Computing, 20(2), (2022).
- [20] Agamloh, E., Jouanne, A.V., and Yokochi, A., “An overview of electric machine trends in modern electric vehicles”, Journal MDPI Machines, 8(2): 20, (2020).
- [21] Carlos, M.E., Danıel, H.P., Roberto, V.R., and Danıel, M.M., “Review of flux-weakening algorithms to extend the speed range in electric vehicle applications with permanent magnet synchronous machines”, IEEE Access, (11): 22961-22981, (2023).
- [22] Mahmouditabar, F., Vahedi, A., and Takorabet, N., “Demagnetisation optimisation of ring winding axial flux permanent magnet motor by modifying the load line of the magnet”, IET Electric Power Applications, 17(7): 928-938, (2023).
- [23] Mahmouditabar, F., Vahedi, A., and Takorabet, N., “Design and analysis of ınterior permanent magnet motor for electric vehicle application considering irreversible demagnetization” IEEE Transactions On Industry Applications, 58(1):284-293, (2022).
- [24] Kurt, E., Demirci, M., and İlbaş, M., “Implementation of heat transfer techniques for an axial flux permanent magnet generator design”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 238(6), (2024).
- [25] Mahmouditabar, F., Vahedi, A., and Fabrizio, M., “The demagnetization phenomenon in PM machines: principles, modeling, and design considerations”, IEEE Access, (11): 47750-47773, (2023).
- [26] İlbaş, M., Demirci, M., and Kurt, E., “Modeling and experimental validation of flow phenomena for optimum rotor blades of a new type permanent magnet generator”, Journal SN Applied Sciences, 1(12): 1544, (2019).
- [27] Jianfei, Z., Xiaoying, L., Shuang, W., and Lixiao, Z., “Review of design and control optimization of axial flux PMSM in renewable-energy applications”, Chinese Journal of Mechanical Engineering, 36(45), (2023).
- [28] Ghaheri, A., Afjei, E. and Torkaman, H., “A novel axial air‐gap transverse flux switching PM generator: design, simulation and prototyping”, IET Electric Power Applications, 17(4): 452-463, (2023).
- [29] Asiful, H., Hang, S.C., Nasrudin, R., Mahdi, T., and Erwan, S., “A fully coreless multi-stator multi-rotor (MSMR) AFPM generator with combination of conventional and halbach magnet arrays”, Alexandria Engineering Journal, 59(2): 589-600, (2020).
- [30] Jun, Z., Huaichun, N., Xiangwei, G., Penghui, L., Shaotong, D., and Ming, Y., “Design and optimization of a new half direct-driven mw-scale axial flux permanent magnet generator for wind turbine”, Journal of Electrical Engineering & Technology, 18(1): 3671-3680, (2023).
- [31] Faradji, B., and Ameur, A., “An axial flux generator for wind turbine in autonomous low-power production”, Majlesi Journal of Electrical Engineering, 18(2): 1-7, (2024).
- [32] Bharathi, M., Malligunta, K.K., and Udochukwu, B.A., “Design and performance assessment of a small-scale ferrite-PM flux reversal wind generator”, Journal MDPI Energies, 15(2): 636, (2020).
Year 2025,
Early View, 1 - 1
Faradji Boubakar
,
Aissa Ameur
References
- [1] Vukadinović, D., and Bašić, M., “A stand-alone inductıon generator wıth improved stator flux orıented control”, Journal of Electrical Engineering, 62(2): 65-72, (2011).
- [2] Soued, S., Ramadan, H.S., and Becherif, M., “Effect of doubly fed induction generator on transient stability analysis under fault conditions”, Journal of Energy Procedia, 162(1): 315-324, (2019).
- [3] Stuebig, C., Seibel, A., Schleicher, K., Haberjan, L., Kloepzig, M., and Ponick, B., “Electromagnetic design of a 10 MW permanent magnet synchronous generator for wind turbine application”, IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'alene ID USA, 10-13, (2015).
- [4] Karthikeyan, S., and Ramakrishnan, C., “A hybrid fuzzy logic-based MPPT algorithm for PMSG-based variable speed wind energy conversion system on a smart grid”, Journal Energy Storage and Saving, 3(4): 295-304, (2024).
- [5] Hossam, H.H.M., Abdel Raheem, Y., and Essam, E.M.M., “Modifed P&O MPPT algorithm for optimal power extraction of five phase PMSG based wind generation system”, Journal SN Applied Sciences, 1(838), (2019).
- [6] Marwa, M., Ahmed, A., Wael, S., Hassanein, B., Nadia, A., Elsonbaty, C., and Mohamed, A., “Enany proposing and evaluation of MPPT algorithms for high-performance stabilized wind turbine driven DFIG”, Journal Alexandria Engineering, 59(6): 5135-5146, (2020).
- [7] Chen, Y.J., Tsai, Y.F., Huang,C.C., Li, M.H., and Hsiao, F.B., “The design and analysis of passive pitch control for horizontal axis wind turbine”, Journal Energy Procedia, 61(1): 683-686, (2014).
- [8] Gambuzza, S., Sunil, P., Felli, M., Anna, M. Y., Broglia, R.,McCarthy, E. D., and Viola, I. M., “Power and thrust control by passive pitch for tidal turbines”, Journal Renewable Energy 239(121921), (2025).
- [9] Apata, O., and Oyedokun, D.T.O., “An overview of control techniques for wind turbine systems” Journal Scientific African, 10(e00566), (2020).
- [10] Nurmalia, A., Hadi, W., and Cahyadi, W., “Performance test of three-phase brushless direct current motor axial flux with differences diameter of neodymium type permanent magnet”, Journal ELKHA, 13(1), (2021).
- [11] Nishanth, F., Verdeghem, J.V., and Severson, E.L., “A Review of axial flux permanent magnet machine technology”, IEEE Transactions on Industry Applications, 59(4): 1-14, (2023).
- [12] Ketut, W., and Chun-Yu, H., “Performances comparison of axial-flux permanent magnet et generators for small-scale vertical-axis wind turbine”, Alexandria Engineering Journal, 61: 1201-1215, (2022).
- [13] Bo, Z., Torsten, E., Martin, D., and Matthias, G., “A comparison of the transverse, axial and radial flux PM synchronous motors for electric vehicle”, IEEE International Electric Vehicle Conference (IEVC), Florence,17-19, (2014).
- [14] Hao, Z., Ma, Y., Wang, P., Luo, G., Chen, Y., “A review of axial-flux permanent-magnet motors: topological structures, design, optimization and control techniques”, Journal MDPI Machines, 10(1178), (2022).
- [15] Wang, H., Zeng, X., Eastham, J.F., and Pei, X., “Axial flux permanent magnet motor topologies magnetic performance comparison”, Journal MDPI Energies, 17(401), (2024).
- [16] Ebrahimi, H., Torkaman, H., and Javadi, H., “Simultaneous improvement of cogging torque and torque density in axial flux‐switching permanent magnet motor”, IET Electric Power Applications, 18(3): 312-324, (2024).
- [17] Tayfun, G., “Torque capability comparison of induction and interior permanent magnet machines for traction”, Gazi University Journal of Science, 36(2): 675-691, (2023).
- [18] Credo, A., Tursini, M., Villani, M., Di Lodovico, C., Orlando, M., and Frattari, F., “Axial flux pm in-wheel motor for electric vehicles: 3D multiphysics analysis”, Journal MDPI Energies, 14(2107), (2021).
- [19] Hamza, A.S., Sajjad, H.Z., and Farhan, K., “A comparative study on different motors used ın electric vehicles”, Journal of Independent Studies and Researc-Computing, 20(2), (2022).
- [20] Agamloh, E., Jouanne, A.V., and Yokochi, A., “An overview of electric machine trends in modern electric vehicles”, Journal MDPI Machines, 8(2): 20, (2020).
- [21] Carlos, M.E., Danıel, H.P., Roberto, V.R., and Danıel, M.M., “Review of flux-weakening algorithms to extend the speed range in electric vehicle applications with permanent magnet synchronous machines”, IEEE Access, (11): 22961-22981, (2023).
- [22] Mahmouditabar, F., Vahedi, A., and Takorabet, N., “Demagnetisation optimisation of ring winding axial flux permanent magnet motor by modifying the load line of the magnet”, IET Electric Power Applications, 17(7): 928-938, (2023).
- [23] Mahmouditabar, F., Vahedi, A., and Takorabet, N., “Design and analysis of ınterior permanent magnet motor for electric vehicle application considering irreversible demagnetization” IEEE Transactions On Industry Applications, 58(1):284-293, (2022).
- [24] Kurt, E., Demirci, M., and İlbaş, M., “Implementation of heat transfer techniques for an axial flux permanent magnet generator design”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 238(6), (2024).
- [25] Mahmouditabar, F., Vahedi, A., and Fabrizio, M., “The demagnetization phenomenon in PM machines: principles, modeling, and design considerations”, IEEE Access, (11): 47750-47773, (2023).
- [26] İlbaş, M., Demirci, M., and Kurt, E., “Modeling and experimental validation of flow phenomena for optimum rotor blades of a new type permanent magnet generator”, Journal SN Applied Sciences, 1(12): 1544, (2019).
- [27] Jianfei, Z., Xiaoying, L., Shuang, W., and Lixiao, Z., “Review of design and control optimization of axial flux PMSM in renewable-energy applications”, Chinese Journal of Mechanical Engineering, 36(45), (2023).
- [28] Ghaheri, A., Afjei, E. and Torkaman, H., “A novel axial air‐gap transverse flux switching PM generator: design, simulation and prototyping”, IET Electric Power Applications, 17(4): 452-463, (2023).
- [29] Asiful, H., Hang, S.C., Nasrudin, R., Mahdi, T., and Erwan, S., “A fully coreless multi-stator multi-rotor (MSMR) AFPM generator with combination of conventional and halbach magnet arrays”, Alexandria Engineering Journal, 59(2): 589-600, (2020).
- [30] Jun, Z., Huaichun, N., Xiangwei, G., Penghui, L., Shaotong, D., and Ming, Y., “Design and optimization of a new half direct-driven mw-scale axial flux permanent magnet generator for wind turbine”, Journal of Electrical Engineering & Technology, 18(1): 3671-3680, (2023).
- [31] Faradji, B., and Ameur, A., “An axial flux generator for wind turbine in autonomous low-power production”, Majlesi Journal of Electrical Engineering, 18(2): 1-7, (2024).
- [32] Bharathi, M., Malligunta, K.K., and Udochukwu, B.A., “Design and performance assessment of a small-scale ferrite-PM flux reversal wind generator”, Journal MDPI Energies, 15(2): 636, (2020).