Research Article
BibTex RIS Cite

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1521093

Abstract

References

  • [1] Xue, L., Wei, J., Zhang, D., Li, X., Liu, X., "Tuning the structure of alumina", Journal of Porous Materials, 22: 1119–1126, (2015).
  • [2] Said, S., Abdelrahman, A. A., "Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound", Journal of Sol-Gel Science and Technology, 95: 308–320, (2020).
  • [3] Wu, W., Wan, Z., Chen, W., Zhu, M., Zhang, D., "Synthesis of mesoporous alumina with tunable structural properties", Microporous and Mesoporous Materials, 217: 12–20, (2015).
  • [4] Mendoza Hernández, J. C., Pérez Osorio, G., Gutiérrez Arias, J.E.M., Castañeda Camacho, J., "Degradation of dye containing in textile wastewater by sequential process: photocatalytic and biological treatment", Turkish Journal of Chemistry, 46:2046–2056, (2022).
  • [5] Lakade, S. H., Harde, M. T., Deshmukh, P. K., "Synthesis of mesoporous alumina: an impact of surface chemistry on release behavior", Particulate Science and Technology, 38: 1035–1041, (2020).
  • [6] Han, D., Li, X., Zhang, L., Wang, Y., Yan, Z., Liu, S., "Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance", Microporous and Mesoporous Materials, 158: 1–6, (2012).
  • [7] Rutkowska, I., Marchewka, J., Jeleń, P., Odziomek, M., Korpyś, M., Paczkowska, J., et al., "Chemical and structural characterization of amorphous and crystalline alumina obtained by alternative sol-gel preparation routes", Materials, 14: 1761, (2021).
  • [8] Sobhani, M., Tavakoli, H., Chermahini, M. D., Kazazi, M., "Preparation of macro-mesoporous γ-alumina via biology gelatin assisted aqueous sol-gel process", Ceramics International, 45: 1385–1391, (2019).
  • [9] Ishihara, A., Tatebe, K., Hashimoto, T., Nasu, H., "Preparation of Silica, Alumina, Titania, and Zirconia with Different Pore Sizes Using Sol-Gel Method and Their Properties as Matrices in Catalytic Cracking", Industrial and Engineering Chemistry Research, 57: 14394–14405, (2018).
  • [10] Wu, G., Liu, G., Li, X., Peng, Z., Zhou, Q., Qi, T., "A green approach of preparation of fine active alumina with high specific surface area from sodium aluminate solution", RSC Advances, 9: 5628–5638, (2019).
  • [11] Tabesh, S., Davar, F., Loghman-Estarki, M. R., "Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions", Journal of Alloys and Compounds, 730: 441–449, (2018).
  • [12] Cai, G., Zheng, X., Zheng, Y., Xiao, Y., Zheng, Y., "Synthesis of ordered mesoporous boron-doped γ-alumina with high surface area and large pore volume", Materials Letters, 178: 248–251, (2016).
  • [13] Al Khudhair, A., Bouchmella, K., Mutin, P. H., Hulea, V., Gimello, O., Mehdi, A., "Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification", Molecules, 27: 2534, (2022).
  • [14] Yelten, A., Karal-Yilmaz, O., Akguner, Z. P., Bal-Ozturk, A., Yilmaz, S., "In-vitro bioactivity investigation of sol-gel derived alumina-bovine hydroxyapatite (Bha) composite powders", Gazi University Journal of Science, 33: 690–700, (2020).
  • [15] Teoh, G. L., Liew, K. Y., Mahmood, W. A. K., "Synthesis and characterization of sol-gel alumina nanofibers", Journal of Sol-Gel Science and Technology, 44: 177–186, (2007).
  • [16] Fu, Q., Cao, C. B., Zhu, H. S., "Preparation of alumina films from a new sol-gel route", Thin Solid Films, 348: 99–102, (1999).
  • [17] Caruso, R. A., Antonietti, M., "Sol-gel nanocoating: An approach to the preparation of structured materials", Chemistry of Materials, 13: 3272–3282, (2001).
  • [18] Gash, A. E., Tillotson, T. M., Satcher, J. H., Hrubesh, L. W., Simpson, R. L., "New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors", Journal of Non-Crystalline Solids, 285: 22–28, (2001).
  • [19] Sobhani, M., Sedaghat, A., Ebadzadeh, T., Ebrahimi, M., "Preparation of nano-sized Mg0.6Al0.8Ti1.6O5 powders using the inorganic salts route", Ceramics International, 39: 6899–6905, (2013).
  • [20] Mutin, P. H., Vioux, A., "Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure", Chemistry of Materials, 21: 582–596, (2009).
  • [21] Debecker, D. P., Hulea, V., Mutin, P. H., "Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: A review", Applied Catalysis A: General, 451: 192–206, (2013).
  • [22] Renuka, N. K., Shijina, A. V., Praveen, A. K., "Mesoporous γ-alumina nanoparticles: Synthesis, characterization and dye removal efficiency", Materials Letters, 82: 42–44, (2012).
  • [23] Rashidi, F., Kharat, A. N., Rashidi, A. M., Lima, E., Lara, V., Valente, J. S., "Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods", European Journal of Inorganic Chemistry, 1544–1551, (2010).
  • [24] Huang, B., Bartholomew, C. H., Woodfield, B. F., "Facile synthesis of mesoporous γ-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides", Microporous and Mesoporous Materials, 183: 37–47, (2014).
  • [25] Bejenaru, N., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Payen, E., et al., "Synthesis, characterization, and catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas", Chemistry of Materials, 21: 522–533, (2009).
  • [26] Akia, M., Alavi, S. M., Rezaei, M., Yan, Z. F., "Optimizing the sol-gel parameters on the synthesis of mesostructure nanocrystalline γ-Al2O3", Microporous and Mesoporous Materials, 122: 72–78, (2009).
  • [27] Park, Y. K., Tadd, E. H., Zubris, M., Tannenbaum, R., "Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides", Materials Research Bulletin, 40: 1506–1512, (2005).
  • [28] Dumeignil, F., Sato, K., Imamura, M., Matsubayashi, N., Payen, E., Shimada, H., "Modification of structural and acidic properties of sol-gel-prepared alumina powders by changing the hydrolysis ratio", Applied Catalysis A: General, 241: 319–329, (2003).
  • [29] Khaleel, A. A., Klabunde, K. J., "Characterization of aerogel prepared high-surface-area alumina: In situ FTIR study of dehydroxylation and pyridine adsorption", Chemistry - A European Journal, 8: 3991–3998, (2002).
  • [30] Pierre, A. C., Elaloui, E., Pajonk, G. M., "Comparison of the structure and porous texture of alumina gels synthesized by different methods", Langmuir, 14: 66–73, (1998).
  • [31] Marinković, M., Waisi, H., Blagojević, S., Zarubica, A., Ljupković, R., Krstić, A., et al., "The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production", Fuel, 315, (2022).
  • [32] Wu, W., Zhu, M., Zhang, D., "The role of solvent preparation in soft template assisted synthesis of mesoporous alumina", Microporous and Mesoporous Materials, 260: 9–16, (2018).
  • [33] Seah, G. L., Wang, L., Tan, L. F., Tipjanrawee, C., Sasangka, W. A., Usadi, A. K., et al., "Ordered Mesoporous Alumina with Tunable Morphologies and Pore Sizes for CO2 Capture and Dye Separation", ACS Applied Materials and Interfaces, 13: 36117–129, (2021).
  • [34] Yao, N., Xiong, G., Zhang, Y., He, M., Yang, W., "Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method", Catalysis Today, 68: 97–109, (2001).
  • [35] Baumann, T. F., Gash, A. E., Chinn, S. C., Sawvel, A. M., Maxwell, R. S., Satcher, J. H., "Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors", Chemistry of Materials, 17: 395–401, (2005).
  • [36] Niero, D. F., Montedo, O. R. K., Bernardin, A. M., "Synthesis and characterization of nano α-alumina by an inorganic sol–gel method", Materials Science and Engineering: B, 280: 115690, (2022).
  • [37] Xu, J., Ibrahim, A. R., Hu, X., Hong, Y., Su, Y., Wang, H., et al., "Preparation of large pore volume γ-alumina and its performance as catalyst support in phenol hydroxylation", Microporous and Mesoporous Materials, 231: 1–8, (2016).
  • [38] Alves, A. K., Berutti, F. A., Bergmann, C. P., "The effects of pH on the preparation of alumina by sol-gel process", Particulate Science and Technology, 23: 351–360, (2005).
  • [39] Li, L., Liu, X., Wang, G., Liu, Y., Kang, W., Deng, N., et al., "Research progress of ultrafine alumina fiber prepared by sol-gel method: A review", Chemical Engineering Journal, 421: 127744, (2021).
  • [40] Yi, H., Wan, Y., Zhang, Y., Wang, Y., Fei, W., Luo, G., "Controllable preparation of highly uniform γ-alumina microspheres via the sol–gel route for alkoxide in a coaxial microchannel", Journal of Sol-Gel Science and Technology, 93: 391–401, (2020).
  • [41] Kibar, M. E., Özcan, O., Dusova-Teke, Y., Yonel-Gumruk, E., Akin, A. N., "Optimization, modeling and characterization of sol-gel process parameters for the synthesis of nanostructured boron doped alumina catalyst supports", Microporous and Mesoporous Materials, 229: 134–144, (2016).
  • [42] Ciriminna, R., Fidalgo, A., Pandarus, V., Béland, F., Ilharco, L. M., Pagliaro, M., "The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications", Chemical Reviews, 113: 6592–6620, (2013).
  • [43] Kobayashi, Y., Yasuda, Y., Morita, T., "Low-temperature synthesis of α-alumina based on sol-gel processes", Advances in Materials and Processing Technologies, 7: 482–513, (2021).
  • [44] Turova, N. Y., Turevskaya, E. P., Kessler, V. G., Yanovskaya, M. I., "The Chemistry of Metal Alkoxides". Boston: Kluwer Academic Publishers, 107-125, (2002).
  • [45] Sharma, P. K., Varadan, V. V., Varadan, V. K., "A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area", Journal of the European Ceramic Society, 23: 659–666, (2003).
  • [46] Sharma, P. K., Jilavi, M. H., Nass, R., Schmidt, H., "Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria", Journal of Luminescence, 82: 187–193, (1999).
  • [47] Gaweł, B., Gaweł, K., Øye, G., "Sol-gel synthesis of non-silica monolithic materials", Materials 3: 2815–2833, (2010).
  • [48] Khalil, K. M. S., "Formation of mesoporous alumina via hydrolysis of modified aluminum isopropoxide in presence of CTAB cationic surfactant", Applied Surface Science, 255: 2874–2878, (2008).
  • [49] Wang, Z. M., "Handbook of Nanophysics: Functional Nanomaterials", Sattler, K. D., USA: Taylor & Francis Group, 9.1-9.12, (2011).
  • [50] Scholten, J. J. F., "Studies in Surface Science and Catalysis", 79, Moulijn, J. A., van Leeuwen, P. W. N. M., van Santen, R. A., Amsterdam: Elsevier, 419-438, (1993).
  • [51] Sakka, S., "Handbook of Advanced Ceramics Materials, Applications, Processing, and Properties", Somiya, S., Amsterdam: Academic Press, 883-910, (2013).
  • [52] Yang, H., Han, R., Li, F., "Synthesis of mesoporous γ-alumina and its catalytic performance in dichloropropanol cyclization", Quimica Nova, 42: 851–858, (2019).
  • [53] Dubey, S., Singh, A., Nim, B., Singh, I. B., "Optimization of molar concentration of AlCl3 salt in the sol–gel synthesis of nanoparticles of gamma alumina and their application in the removal of fluoride of water", Journal of Sol-Gel Science and Technology, 82: 468–477, (2017).

Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1521093

Abstract

This paper presents a comparative study of mesoporous γ-alumina preparation using organic and inorganic sol-gel processes. Aluminum chloride and aluminum isopropoxide (AIP) served as aluminum sources for the inorganic and organic routes, respectively. In the inorganic method, aluminum chloride was hydrolyzed with ammonium hydroxide at various hydrolysis ratios (10, 21, 31, 41, 52, 62). For the organic route, AIP was hydrolyzed at 85 ℃ with hydrolysis ratios ranging from 9 to 200 (mol H2O/mol AIP) for comparison. A parametric study was conducted to analyze the effects of initial precursor concentration, hydrolysis ratio, and nitric acid to AIP ratio in the organic route. Physical characterization and phase evaluation of the γ-alumina samples were conducted using XRD, N2-Physisorption, and TEM. The BET surface areas of the mesoporous γ-alumina materials ranged from 209 to 299 m2/g for the inorganic method, and 362 to 378 m2/g for the organic method. The mean pore diameter of the γ-alumina powders was approximately twice as large in the inorganic method compared to the organic method, with values of 8.9 nm and 4.8 nm, respectively. Optimal sol-gel process parameters for the organic method were identified as an initial AIP concentration of 0.1 M, a hydrolysis ratio of 150, and a nitric acid to AIP ratio of 0.3. The inorganic sol-gel method, which is cost-effective and easy to handle, produced results comparable to those reported in the literature.

References

  • [1] Xue, L., Wei, J., Zhang, D., Li, X., Liu, X., "Tuning the structure of alumina", Journal of Porous Materials, 22: 1119–1126, (2015).
  • [2] Said, S., Abdelrahman, A. A., "Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound", Journal of Sol-Gel Science and Technology, 95: 308–320, (2020).
  • [3] Wu, W., Wan, Z., Chen, W., Zhu, M., Zhang, D., "Synthesis of mesoporous alumina with tunable structural properties", Microporous and Mesoporous Materials, 217: 12–20, (2015).
  • [4] Mendoza Hernández, J. C., Pérez Osorio, G., Gutiérrez Arias, J.E.M., Castañeda Camacho, J., "Degradation of dye containing in textile wastewater by sequential process: photocatalytic and biological treatment", Turkish Journal of Chemistry, 46:2046–2056, (2022).
  • [5] Lakade, S. H., Harde, M. T., Deshmukh, P. K., "Synthesis of mesoporous alumina: an impact of surface chemistry on release behavior", Particulate Science and Technology, 38: 1035–1041, (2020).
  • [6] Han, D., Li, X., Zhang, L., Wang, Y., Yan, Z., Liu, S., "Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance", Microporous and Mesoporous Materials, 158: 1–6, (2012).
  • [7] Rutkowska, I., Marchewka, J., Jeleń, P., Odziomek, M., Korpyś, M., Paczkowska, J., et al., "Chemical and structural characterization of amorphous and crystalline alumina obtained by alternative sol-gel preparation routes", Materials, 14: 1761, (2021).
  • [8] Sobhani, M., Tavakoli, H., Chermahini, M. D., Kazazi, M., "Preparation of macro-mesoporous γ-alumina via biology gelatin assisted aqueous sol-gel process", Ceramics International, 45: 1385–1391, (2019).
  • [9] Ishihara, A., Tatebe, K., Hashimoto, T., Nasu, H., "Preparation of Silica, Alumina, Titania, and Zirconia with Different Pore Sizes Using Sol-Gel Method and Their Properties as Matrices in Catalytic Cracking", Industrial and Engineering Chemistry Research, 57: 14394–14405, (2018).
  • [10] Wu, G., Liu, G., Li, X., Peng, Z., Zhou, Q., Qi, T., "A green approach of preparation of fine active alumina with high specific surface area from sodium aluminate solution", RSC Advances, 9: 5628–5638, (2019).
  • [11] Tabesh, S., Davar, F., Loghman-Estarki, M. R., "Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions", Journal of Alloys and Compounds, 730: 441–449, (2018).
  • [12] Cai, G., Zheng, X., Zheng, Y., Xiao, Y., Zheng, Y., "Synthesis of ordered mesoporous boron-doped γ-alumina with high surface area and large pore volume", Materials Letters, 178: 248–251, (2016).
  • [13] Al Khudhair, A., Bouchmella, K., Mutin, P. H., Hulea, V., Gimello, O., Mehdi, A., "Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification", Molecules, 27: 2534, (2022).
  • [14] Yelten, A., Karal-Yilmaz, O., Akguner, Z. P., Bal-Ozturk, A., Yilmaz, S., "In-vitro bioactivity investigation of sol-gel derived alumina-bovine hydroxyapatite (Bha) composite powders", Gazi University Journal of Science, 33: 690–700, (2020).
  • [15] Teoh, G. L., Liew, K. Y., Mahmood, W. A. K., "Synthesis and characterization of sol-gel alumina nanofibers", Journal of Sol-Gel Science and Technology, 44: 177–186, (2007).
  • [16] Fu, Q., Cao, C. B., Zhu, H. S., "Preparation of alumina films from a new sol-gel route", Thin Solid Films, 348: 99–102, (1999).
  • [17] Caruso, R. A., Antonietti, M., "Sol-gel nanocoating: An approach to the preparation of structured materials", Chemistry of Materials, 13: 3272–3282, (2001).
  • [18] Gash, A. E., Tillotson, T. M., Satcher, J. H., Hrubesh, L. W., Simpson, R. L., "New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors", Journal of Non-Crystalline Solids, 285: 22–28, (2001).
  • [19] Sobhani, M., Sedaghat, A., Ebadzadeh, T., Ebrahimi, M., "Preparation of nano-sized Mg0.6Al0.8Ti1.6O5 powders using the inorganic salts route", Ceramics International, 39: 6899–6905, (2013).
  • [20] Mutin, P. H., Vioux, A., "Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure", Chemistry of Materials, 21: 582–596, (2009).
  • [21] Debecker, D. P., Hulea, V., Mutin, P. H., "Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: A review", Applied Catalysis A: General, 451: 192–206, (2013).
  • [22] Renuka, N. K., Shijina, A. V., Praveen, A. K., "Mesoporous γ-alumina nanoparticles: Synthesis, characterization and dye removal efficiency", Materials Letters, 82: 42–44, (2012).
  • [23] Rashidi, F., Kharat, A. N., Rashidi, A. M., Lima, E., Lara, V., Valente, J. S., "Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods", European Journal of Inorganic Chemistry, 1544–1551, (2010).
  • [24] Huang, B., Bartholomew, C. H., Woodfield, B. F., "Facile synthesis of mesoporous γ-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides", Microporous and Mesoporous Materials, 183: 37–47, (2014).
  • [25] Bejenaru, N., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Payen, E., et al., "Synthesis, characterization, and catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas", Chemistry of Materials, 21: 522–533, (2009).
  • [26] Akia, M., Alavi, S. M., Rezaei, M., Yan, Z. F., "Optimizing the sol-gel parameters on the synthesis of mesostructure nanocrystalline γ-Al2O3", Microporous and Mesoporous Materials, 122: 72–78, (2009).
  • [27] Park, Y. K., Tadd, E. H., Zubris, M., Tannenbaum, R., "Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides", Materials Research Bulletin, 40: 1506–1512, (2005).
  • [28] Dumeignil, F., Sato, K., Imamura, M., Matsubayashi, N., Payen, E., Shimada, H., "Modification of structural and acidic properties of sol-gel-prepared alumina powders by changing the hydrolysis ratio", Applied Catalysis A: General, 241: 319–329, (2003).
  • [29] Khaleel, A. A., Klabunde, K. J., "Characterization of aerogel prepared high-surface-area alumina: In situ FTIR study of dehydroxylation and pyridine adsorption", Chemistry - A European Journal, 8: 3991–3998, (2002).
  • [30] Pierre, A. C., Elaloui, E., Pajonk, G. M., "Comparison of the structure and porous texture of alumina gels synthesized by different methods", Langmuir, 14: 66–73, (1998).
  • [31] Marinković, M., Waisi, H., Blagojević, S., Zarubica, A., Ljupković, R., Krstić, A., et al., "The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production", Fuel, 315, (2022).
  • [32] Wu, W., Zhu, M., Zhang, D., "The role of solvent preparation in soft template assisted synthesis of mesoporous alumina", Microporous and Mesoporous Materials, 260: 9–16, (2018).
  • [33] Seah, G. L., Wang, L., Tan, L. F., Tipjanrawee, C., Sasangka, W. A., Usadi, A. K., et al., "Ordered Mesoporous Alumina with Tunable Morphologies and Pore Sizes for CO2 Capture and Dye Separation", ACS Applied Materials and Interfaces, 13: 36117–129, (2021).
  • [34] Yao, N., Xiong, G., Zhang, Y., He, M., Yang, W., "Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method", Catalysis Today, 68: 97–109, (2001).
  • [35] Baumann, T. F., Gash, A. E., Chinn, S. C., Sawvel, A. M., Maxwell, R. S., Satcher, J. H., "Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors", Chemistry of Materials, 17: 395–401, (2005).
  • [36] Niero, D. F., Montedo, O. R. K., Bernardin, A. M., "Synthesis and characterization of nano α-alumina by an inorganic sol–gel method", Materials Science and Engineering: B, 280: 115690, (2022).
  • [37] Xu, J., Ibrahim, A. R., Hu, X., Hong, Y., Su, Y., Wang, H., et al., "Preparation of large pore volume γ-alumina and its performance as catalyst support in phenol hydroxylation", Microporous and Mesoporous Materials, 231: 1–8, (2016).
  • [38] Alves, A. K., Berutti, F. A., Bergmann, C. P., "The effects of pH on the preparation of alumina by sol-gel process", Particulate Science and Technology, 23: 351–360, (2005).
  • [39] Li, L., Liu, X., Wang, G., Liu, Y., Kang, W., Deng, N., et al., "Research progress of ultrafine alumina fiber prepared by sol-gel method: A review", Chemical Engineering Journal, 421: 127744, (2021).
  • [40] Yi, H., Wan, Y., Zhang, Y., Wang, Y., Fei, W., Luo, G., "Controllable preparation of highly uniform γ-alumina microspheres via the sol–gel route for alkoxide in a coaxial microchannel", Journal of Sol-Gel Science and Technology, 93: 391–401, (2020).
  • [41] Kibar, M. E., Özcan, O., Dusova-Teke, Y., Yonel-Gumruk, E., Akin, A. N., "Optimization, modeling and characterization of sol-gel process parameters for the synthesis of nanostructured boron doped alumina catalyst supports", Microporous and Mesoporous Materials, 229: 134–144, (2016).
  • [42] Ciriminna, R., Fidalgo, A., Pandarus, V., Béland, F., Ilharco, L. M., Pagliaro, M., "The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications", Chemical Reviews, 113: 6592–6620, (2013).
  • [43] Kobayashi, Y., Yasuda, Y., Morita, T., "Low-temperature synthesis of α-alumina based on sol-gel processes", Advances in Materials and Processing Technologies, 7: 482–513, (2021).
  • [44] Turova, N. Y., Turevskaya, E. P., Kessler, V. G., Yanovskaya, M. I., "The Chemistry of Metal Alkoxides". Boston: Kluwer Academic Publishers, 107-125, (2002).
  • [45] Sharma, P. K., Varadan, V. V., Varadan, V. K., "A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area", Journal of the European Ceramic Society, 23: 659–666, (2003).
  • [46] Sharma, P. K., Jilavi, M. H., Nass, R., Schmidt, H., "Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria", Journal of Luminescence, 82: 187–193, (1999).
  • [47] Gaweł, B., Gaweł, K., Øye, G., "Sol-gel synthesis of non-silica monolithic materials", Materials 3: 2815–2833, (2010).
  • [48] Khalil, K. M. S., "Formation of mesoporous alumina via hydrolysis of modified aluminum isopropoxide in presence of CTAB cationic surfactant", Applied Surface Science, 255: 2874–2878, (2008).
  • [49] Wang, Z. M., "Handbook of Nanophysics: Functional Nanomaterials", Sattler, K. D., USA: Taylor & Francis Group, 9.1-9.12, (2011).
  • [50] Scholten, J. J. F., "Studies in Surface Science and Catalysis", 79, Moulijn, J. A., van Leeuwen, P. W. N. M., van Santen, R. A., Amsterdam: Elsevier, 419-438, (1993).
  • [51] Sakka, S., "Handbook of Advanced Ceramics Materials, Applications, Processing, and Properties", Somiya, S., Amsterdam: Academic Press, 883-910, (2013).
  • [52] Yang, H., Han, R., Li, F., "Synthesis of mesoporous γ-alumina and its catalytic performance in dichloropropanol cyclization", Quimica Nova, 42: 851–858, (2019).
  • [53] Dubey, S., Singh, A., Nim, B., Singh, I. B., "Optimization of molar concentration of AlCl3 salt in the sol–gel synthesis of nanoparticles of gamma alumina and their application in the removal of fluoride of water", Journal of Sol-Gel Science and Technology, 82: 468–477, (2017).
There are 53 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Research Article
Authors

Orhan Özcan 0000-0001-7325-5176

Ayşe Nilgün Akın 0000-0001-9392-5149

Early Pub Date October 17, 2025
Publication Date October 22, 2025
Submission Date July 23, 2024
Acceptance Date August 11, 2025
Published in Issue Year 2025 Early View

Cite

APA Özcan, O., & Akın, A. N. (2025). Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1521093
AMA Özcan O, Akın AN. Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder. Gazi University Journal of Science. Published online October 1, 2025:1-1. doi:10.35378/gujs.1521093
Chicago Özcan, Orhan, and Ayşe Nilgün Akın. “Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder”. Gazi University Journal of Science, October (October 2025), 1-1. https://doi.org/10.35378/gujs.1521093.
EndNote Özcan O, Akın AN (October 1, 2025) Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder. Gazi University Journal of Science 1–1.
IEEE O. Özcan and A. N. Akın, “Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder”, Gazi University Journal of Science, pp. 1–1, October2025, doi: 10.35378/gujs.1521093.
ISNAD Özcan, Orhan - Akın, Ayşe Nilgün. “Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder”. Gazi University Journal of Science. October2025. 1-1. https://doi.org/10.35378/gujs.1521093.
JAMA Özcan O, Akın AN. Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder. Gazi University Journal of Science. 2025;:1–1.
MLA Özcan, Orhan and Ayşe Nilgün Akın. “Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1521093.
Vancouver Özcan O, Akın AN. Organic and Inorganic Sol-Gel Routes for Preparing Mesoporous γ-Alumina Powder. Gazi University Journal of Science. 2025:1-.