Thin-Film Biosensors in Public Health: Review for E. coli Detection
Year 2025,
Early View, 1 - 1
Özkur Kuran
,
Duygu Takanoğlu Bulut
,
Ahmet Koluman
Abstract
In response to escalating concerns regarding food hygiene, there is an urgent demand for expedited and dependable methods for bacterial detection. Escherichia coli (E. coli) stands as a pivotal indicator organism, delineating potential fecal contamination and associated health hazards. This scholarly inquiry investigates the viability of employing thin-film biosensors for swift and discerning E. coli detection, thereby making substantial strides in safeguarding public health. This investigation highlights the underlying principles governing these biosensors, accentuating the pivotal role of functionalization in facilitating precise capture and detection. Diverse materials and deposition techniques employed in thin film fabrication are scrutinized, elucidating their respective merits and demerits. Moreover, this study showcases two specific instances elucidating the multifarious applications of thin-film biosensors in bacterial detection. The first case delineates a surface-enhanced Raman scattering (SERS)-based nano biosensor chip adept at single-cell E. coli detection, capitalizing on signal amplification through targeted capture facilitated by bacteriophages. The second instance delineates a cost-efficient strategy leveraging a zinc oxide (ZnO) thin film functionalized with immobilized antibodies for E. coli detection. The exposition of both highly sensitive and economical options underscores the adaptability of thin-film biosensors in combating bacterial perils. Subsequent research endeavors should pivot towards augmenting sensitivity, specificity, and multiplexing capabilities to ensure comprehensive bacterial detection across diverse environments.
Thanks
This review is a part of Pamukkale DOSAP project which were held for Post-Doc studies of Duygu Takanoğlu Bulut (PhD) and Özkur Kuran (PhD).
References
- [1] Fung F., Wang H.S. and Menon S., "Food safety in the 21st century", Biomedical Journal, 41:88–95, (2018). DOI: https://doi.org/10.1016/j.bj.2018.03.003
- [2] Duchenne-Moutien R.A. and Neetoo H., "Climate Change and Emerging Food Safety Issues: A Review", Journal of Food Protection, 84:1884–1897, (2021). DOI: https://doi.org/10.4315/JFP-21-141
- [3] Kevenk T., O. and Koluman A., "Invitro Decontamination Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Important Foodborne Pathogens", Etlik Veteriner Mikrobiyoloji Dergisi, 32:1–5, (2021). DOI: https://doi.org/10.1108/00070700410515175
- [4] Miles S., Brennan M., Kuznesof S., Ness M., Ritson C. and Frewer LJ., "Public worry about specific food safety issues", British Food Journal, 106:9–22, (2004). DOI: https://doi.org/10.1108/00070700410515172
- [5] Dua P., Ren S., Lee S.W., Kim J-K., Shin H., Jeong O-C., Kim S. and Lee D-K., "Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats", Molecules and Cells, 39:807–813, (2016). DOI: https://doi.org/10.14348/molcells.2016.0167
- [6] Bhardwaj D.K., Taneja N.K.S, Chakotiya A., Patel P., Taneja P., Sachdev D., Gupta S. and Sanal MG., "Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products", International Journal of Food Microbiology, 336:108899, (2021). DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108899
- [7] Al S., Uysal Ciloglu F., Akcay A. and Koluman A., "Machine learning models for prediction of Escherichia coli O157:H7 growth in raw ground beef at different storage temperatures", Meat Science, 210:109421, (2024). DOI: https://doi.org/10.1016/j.meatsci.2023.109421
- [8] Li F., Zhao Q., Wang C., Lu X., Li X-F. and Le X.C., "Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry", Analytical Chemistry, 82:3399–3403, (2010). DOI: https://doi.org/10.1021/ac9029883
- [9] Call D.R., Brockman F.J. and Chandler D.P., "Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays", International Journal of Food Microbiology, 67:71–80, (2001). DOI: https://doi.org/10.1021/ac100325f
- [10] Tawil N., Sacher E., Mandeville R. and Meunier M., "Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages", Biosensors and Bioelectronics, 37:24–29, (2012). DOI: https://doi.org/10.1016/j.bios.2012.04.048
- [11] Yan R., Shou Z., Chen J., Wu H, Zhao Y., Qiu L., Jiang P., Mou X-Z., Wang J-H. and Li Y-Q., "An On-Off-On Gold Nanocluster-Based Fluorescent Probe for Rapid Escherichia coli Differentiation, Detection and Bactericide Screening", ACS Sustainable Chemistry & Engineering, 6 (4):4504-4509, (2018).DOI: https://doi.org/10.1021/acssuschemeng.8b00112
- [12] Xing G., Zhang W. and Li N., "Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria", Chinese Chemical Letters, 33:1743–1751, (2022). DOI: https://doi.org/10.1016/j.cclet.2021.08.073
- [13] Athamanolap P., Hsieh K., Chen L., Yang S. and Wang T-H., "Integrated Bacterial Identification and Antimicrobial Susceptibility Testing Using PCR and High-Resolution Melt", Analytical Chemistry, 89:11529–11536, (2017). DOI: https://doi.org/10.1021/acs.analchem.7b02809
- [14] Lan L., Yao Y., Ping J. and Ying Y., "Recent advances in nanomaterial-based biosensors for antibiotics detection", Biosensors and Bioelectronics, 91:504–514, (2017). DOI: https://doi.org/10.1016/j.bios.2017.01.007. DOI: https://doi.org/10.1016/j.bios.2020.112276
- [15] Alafeef M., Moitra P. and Pan D., "Nano-enabled sensing approaches for pathogenic bacterial detection", Biosensors and Bioelectronics, 165:112276, (2020). DOI: https://doi.org/10.1016/j.bios.2020.112276
- [16] Mocan T., Matea C.T., Pop T., Mosteanu O., Buzoianu A.D., Puia C., Iancu C. and Mocan L., "Development of nanoparticle-based optical sensors for pathogenic bacterial detection", Journal of Nanobiotechnology, 15:25, (2017). DOI: https://doi.org/10.1186/s12951-017-0260-y
- [17] Ray P.C., Khan S.A., Singh A.K., Senapati D. and Fan Z., "Nanomaterials for targeted detection and photothermal killing of bacteria", Chemical Society Reviews, 41:3193, (2012). DOI: https://doi.org/10.1039/C2CS15340H
- [18] Shen Y., Zhang Y., Gao Z.F., Ye Y., Wu Q., Chen H-Y. and Xu J-J., "Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria", Nano Today, 38:101121, (2021). DOI: https://doi.org/10.1016/j.nantod.2021.101121
- [19] Galvin S., Dolan A., Cahill O., Daniels S. and Humphreys H., "Microbial monitoring of the hospital environment: why and how?", Journal of Hospital Infection, 82:143–151, (2012). DOI: https://doi.org/10.1016/j.jhin.2012.06.015
- [20] Liu X., Marrakchi M., Xu D., Dong H. and Andreescu S., "Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria", Biosensors and Bioelectronics, 80:9–16, (2016). DOI: https://doi.org/10.1016/j.bios.2016.01.041
- [21] Grossi M., Lazzarini R., Lanzoni M., Pompei A., Matteuzzi D. and Ricco B., "A Portable Sensor With Disposable Electrodes for Water Bacterial Quality Assessment", IEEE Sensors Journal, 13:1775–1782, (2013). DOI: https://doi.org/10.1109/JSEN.2013.2243142
- [22] Schaumburg F., Carrell C.S. and Henry C.S., "Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis", Analytical Chemistry, 91:9623–9630, (2019). DOI: https://doi.org/10.1021/acs.analchem.9b01002
- [23] Holm C. and Jespersen L., "A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria", Applied and Environmental Microbiology, 69:2857–2863, (2003). DOI: https://doi.org/10.1128/AEM.69.5.2857-2863.2003
- [24] Rubio E., Zboromyrska Y., Bosch J., Fernandez-Pittol M.J., Fidalgo B.I., Fasanella A., Mons A., Román A., Casals-Pascual C. and Vila J., "Evaluation of flow cytometry for the detection of bacteria in biological fluids", PLoS ONE, 14:e0220307, (2019). DOI: https://doi.org/10.1371/journal.pone.0220307
- [25] Becerra S.C., Roy D.C., Sanchez C.J., Christy R.J. and Burmeister D.M., "An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue", BMC Research Notes, 9:216, (2016). DOI: https://doi.org/10.1186/s13104-016-1902-0
- [26] Hameed S., Xie L. and Ying Y., "Conventional and emerging detection techniques for pathogenic bacteria in food science: A review", Trends in Food Science & Technology, 81:61–73, (2018). DOI: https://doi.org/10.1016/j.tifs.2018.05.020
- [27] Kumar S., Gopinathan R., Chandra G.K., Umapathy S. and Saini D.K., "Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy", Analytical and Bioanalytical Chemistry, 412:2505–2516, (2020). DOI: https://doi.org/10.1007/s00216-020-02474-2
- [28] Koluman A,. Celik G. and Unlu T., "Salmonella identification from foods in eight hours: A prototype study with Salmonella Typhimurium", Iranian Journal of Microbiology, 4:15–24, (2012). PMID: 22783456; PMCID: PMC3391555
- [29] Aksu F., Altunatmaz S.S., Issa G., Aksoy A. and Aksu H., "Prevalence of Cronobacter spp. in various foodstuffs and identification by multiplex PCR", Food Science and Technology, 39:729–734, (2019). DOI: https://doi.org/10.1590/fst.06818
- [30] Farouk F., Essam S., Abdel-Motaleb A., El-Shimy R., Fritzsche W. and Azzazy HME-S., "Fast detection of bacterial contamination in fresh produce using FTIR and spectral classification", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 277:121248, (2022). DOI: https://doi.org/10.1016/j.saa.2022.121248
- [31] Chung H.J., Castro C.M., Im H., Lee H. and Weissleder R., "A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria", Nature Nanotechnology, 8:369–375, (2013). DOI: https://doi.org/10.1038/nnano.2013.70
- [32] Eltzov E., Yehuda A. and Marks R.S., "Creation of a new portable biosensor for water toxicity determination", Sensors and Actuators B: Chemical, 221:1044–1054, (2015). DOI: https://doi.org/10.1016/j.snb.2015.06.153
- [33] Le N.T.H., Viet N.X., Anh N.V., Bach T.N., Thu P.T., Ngoc N.T., Manh D.H., Ky V.H., Lam V.D., Kodelov V., Von Gratowski S., Binh N.H. and Anh T.X., "Non-enzymatic electrochemical sensor based on ZnO nanoparticles/porous graphene for the detection of hypoxanthine in pork meat", AIP Advances, 14:025034, (2024). DOI: https://doi.org/10.1063/5.0190293
- [34] Massad-Ivanir N., Shtenberg G., Tzur A., Krepker M.A. and Segal E., "Engineering Nanostructured Porous SiO2 Surfaces for Bacteria Detection via “Direct Cell Capture”", Analytical Chemistry, 83:3282–3289, (2011). DOI: https://doi.org/10.1021/ac200407w
- [35] Srivastava S.K., Hamo H.B., Kushmaro A., Marks R.S., Grüner C., Rauschenbach B. and Abdulhalim I., "Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films", Analyst, 140:3201–3209, (2015). DOI: https://doi.org/10.1039/C5AN00209E
- [36] Massad-Ivanir N., Shtenberg G., Raz N., Gazenbeek C., Budding D., Bos M.P. and Segal E., "Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry", Scientific Reports, 6:38099, (2016). DOI: https://doi.org/10.1038/srep38099
- [37] Castillo-Henríquez L., Brenes-Acuña M., Castro-Rojas A., Cordero-Salmerón R., Lopretti-Correa M. and Vega-Baudrit J.R., "Biosensors for the Detection of Bacterial and Viral Clinical Pathogens", Sensors, 20:6926, (2020). DOI: https://doi.org/10.3390/s20236926
- [38] Hurk R.V.D. and Evoy S., "A Review of Membrane-Based Biosensors for Pathogen Detection", Sensors, 15:14045–14078, (2015). DOI: https://doi.org/10.3390/s150614045
- [39] Kumar A., Kumar Goyal A. and Gupta N., " Review Thin-Film Transistors (TFTs) for Highly Sensitive Biosensing Applications: A Review ", ECS Journal of Solid State Science and Technology, 9:11 115022, (2020). DOI: https://doi.org/10.1149/2162-8777/abb2b3
- [40] Tenenbaum E. and Segal E., "Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound", Analyst, 140:7726–7733, (2015). DOI: https://doi.org/10.1039/C5AN01717C
- [41] Galvan D.D., Parekh V., Liu E., Liu E-L. and Yu Q., "Sensitive Bacterial Detection via Dielectrophoretic-Enhanced Mass Transport Using Surface-Plasmon-Resonance Biosensors", Analytical Chemistry, 90:14635–14642, (2018). DOI: https://doi.org/10.1021/acs.analchem.8b05137
- [42] Jenison R., Jaeckel H., Klonoski J., Latorra D. and Wiens J., "Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor", Analyst, 139:3763–3769, (2014). DOI: https://doi.org/10.1039/C4AN00418C
- [43] Goronzy J.J. and Weyand C., M., "Understanding immunosenescence to improve responses to vaccines", Nature Immunology, 14:428–436, (2013). DOI: https://doi.org/10.1038/ni.2588
- [44] Felix F.S. and Angnes L., "Electrochemical immunosensors–A powerful tool for analytical applications", Biosensors and Bioelectronics, 102:470–478, (2018). DOI: https://doi.org/10.1016/j.bios.2017.11.029
- [45] De La Escosura-Muñiz A., Parolo C. and Merkoçi A., "Immunosensing using nanoparticles", Materials Today, 13:24–34, (2010). DOI: https://doi.org/10.1016/j.bios.2018.11.035
- [46] George S.M., Tandon S. and Kandasubramanian B., "Advancements in Hydrogel-Functionalized Immunosensing Platforms", ACS Omega, 5:2060–2068, (2020). DOI: https://doi.org/10.1021/acsomega.9b03816
- [47] Shaikh M.O., Zhu P-Y., Wang C-C., Du Y-C. and Chuang C-H., "Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care", Biosensors and Bioelectronics, 126:572–580, (2019). DOI: https://doi.org/10.1016/j.bios.2018.11.035
- [48] Arcadio F., Marzano C., Del Prete D., Zeni L. and Cennamo N., "Analysis of Plasmonic Sensors Performance Realized by Exploiting Different UV-Cured Optical Adhesives Combined with Plastic Optical Fibers", Sensors, 23:6182, (2023). DOI: https://doi.org/10.3390/s23136182
- [49] Park J.H., Cho Y.W. and Kim T.H., "Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens", Biosensors, 12:180, (2022). DOI: https://doi.org/10.3390/bios12030180
- [50] Thakur A., Kumar A., Kaya S., Marzouki R., Zhang F. and Guo L., "Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants", Coatings, 12:1459, (2022). DOI: https://doi.org/10.3390/coatings12101459
- [51] Nukaly H.Y., Ansari S.A., Nukaly H.Y. and Ansari S.A., "An Insight Into the Physicochemical Properties of Gold Nanoparticles in Relation to Their Clinical and Diagnostic Applications", Cureus, 5(4):e37803, (2023). DOI: https://doi.org/10.7759/cureus.37803
- [52] Duarte D.P., Alberto N., Bilro L. and Nogueira R., "Theoretical Design of a High Sensitivity SPR-Based Optical Fiber Pressure Sensor", Journal of Lightwave Technology, 33:4606–4611, (2015). DOI: https://doi.org/10.1109/JLT.2015.2477353
- [53] Borah S.B.D., Bora T., Baruah S. and Dutta J., "Heavy metal ion sensing in water using surface plasmon resonance of metallic nanostructures", Groundwater for Sustainable Development, 1:1–11, (2015). DOI: https://doi.org/10.1016/j.gsd.2015.12.004
- [54] Shukla S., Sharma N.K. and Sajal V., "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study", Sensors and Actuators B: Chemical, 206:463–470, (2015). DOI: https://doi.org/10.1016/j.snb.2014.09.083
- [55] Rim Y.S., "Review of metal oxide semiconductors-based thin-film transistors for point-of-care sensor applications", Journal of Information Display, 21:203–210, (2020). DOI: https://doi.org/10.1080/15980316.2020.1714762
- [56] Liu B. and Liu J., "Sensors and biosensors based on metal oxide nanomaterials", TrAC Trends in Analytical Chemistry, 121:115690, (2019). DOI: https://doi.org/10.1016/j.trac.2019.115690
- [57] Butler S.K., Li F., Chaube R., Laskowski D. and Liu CC., "A Single Use Biosensor for the Detection of Nitric Oxide (NO) at ppb and sub-μM Level in Gas-and Liquid- Phase Media", Current Biomarkers, 6(1):3–9, (2016). DOI: http://doi.org/10.2174/2210309006666160502112925
- [58] Li T., Xu T., Yao Z., Ding Y., Liu G. and Shan F., "Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson’s disease", Applied Physics Letters, 122:243701, (2023). DOI: https://doi.org/10.1063/5.0151300
- [59] Şerban I. and Enesca A., "Metal Oxides-Based Semiconductors for Biosensors Applications", Frontiers in Chemistry, 8:354, (2020). DOI: https://doi.org/10.3389/fchem.2020.00354
- [60] Solanki P.R., Kaushik A., Agrawal VV. . and Malhotra B.D., "Nanostructured metal oxide-based biosensors", NPG Asia Materials, 3:17–24, (2011). DOI: https://doi.org/10.1038/asiamat.2010.137
- [61] Li W. and Min J., "Responsive polymer thin films", Journal of Polymer Science, 61:993–995, (2023). DOI: https://doi.org/10.1002/pol.20230265
- [62] Ozaydin Ince G., Coclite A.M. and Gleason K.K., "CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes", Reports on Progress in Physics, 75:016501, (2011). DOI: https://doi.org/10.1088/0034-4885/75/1/016501
- [63] Khan A.A.P, Khan A., Rahman M.M., Asiri A.M. and Oves M., "Sensor development of 1,2 Dichlorobenzene based on polypyrole/Cu-doped ZnO (PPY/CZO) nanocomposite embedded silver electrode and their antimicrobial studies", International Journal of Biological Macromolecules, 98:256–267, (2017). DOI: https://doi.org/10.1016/j.ijbiomac.2017.02.005
- [64] Da Silva J.S.L., Oliveira M.D.L., De Melo C.P. and Andrade C.A.S., "Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films", Colloids and Surfaces B: Biointerfaces, 117:549–554, (2014). DOI: https://doi.org/10.1016/j.colsurfb.2013.12.057
- [65] Bhattacharyya N., Bhattacharyya S., Ghosh K., Pal S., Jana A. and Mukherjee S., "Fabrication of sensor technology using thin films for biosensing, agricultural and environmental applications", Comprehensive Materials Processing 2 nd ed., Elsevier, Amsterdam, (2023). DOI: https://doi.org/10.1016/B978-0-323-96020-5.00059-5
- [66] Zhang Z., Hossain M.F., Arakawa T. and Takahashi T., "Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application", Journal of Hazardous Materials, 176:973–978, (2010). DOI: https://doi.org/10.1016/j.jhazmat.2009.11.136
- [67] Uzun Y., Kuran O. and Avcı İ., "Fabrication of Superconducting YBa2Cu3O7−x Thin Films on Si Wafer via YSZ/CeO2 buffer layers", Journal of Superconductivity and Novel Magnetism, 30: 2335–2340, (2017). DOI: https://doi.org/10.1007/s10948-016-3846-y
- [68] Smentkowski V., S., "Trends in sputtering", Progress in Surface Science, 64:1–58, (2000). DOI: https://doi.org/10.1016/S0079-6816(99)00021-0
- [69] Rossnagel S.M., "Magnetron sputtering", Journal of Vacuum Science & Technology A, 38: 060805, (2020). DOI: https://doi.org/10.1116/6.0000594
- [70] Hora J., Hall C., Evans D. and Charrault E., "Inorganic Thin Film Deposition and Application on Organic Polymer Substrates", Advanced Engineering Materials, 20:1700868, (2018). DOI: https://doi.org/10.1002/adem.201700868
- [71] Gad S., Rafea M.A. and Badr Y., "Optical and photoconductive properties of Pb0.9Sn0.1Se nano-structured thin films deposited by thermal vacuum evaporation and pulsed laser deposition", Journal of Alloys and Compounds, 515:101–107, (2012). DOI: https://doi.org/10.1016/j.jallcom.2011.11.100
- [72] Wang L., Mao W., Ni D., Di J., Wu Y. and Tu Y., "Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor", Electrochemistry Communications, 10:673–676, (2008). DOI: https://doi.org/10.1016/j.elecom.2008.02.009
- [73] Zhang X., Guo S. and Han Y. "Beyond Conventional Patterns: New Electrochemical Lithography with High Precision for Patterned Film Materials and Wearable Sensors", Analytical Chemistry, 89:2569–2574, (2017). DOI: https://doi.org/10.1021/acs.analchem.6b04816
- [74] Crosley M.S. and Yip W.T., "Kinetically Doped Silica Sol–Gel Optical Biosensors: Expanding Potential Through Dip-Coating", ACS Omega, 3:7971–7978, (2018). DOI: https://doi.org/10.1021/acsomega.8b00897
- [75] Aylott J.W., Richardson D.J. and Russell D.A., "Optical Biosensing of Gaseous Nitric Oxide Using Spin-Coated Sol−Gel Thin Films", Chemistry of Materials, 9(11):2261–2263, (1997). DOI: https://doi.org/10.1021/cm970324v
- [76] Wu P.C., Pai C.P., Lee M.J. and Lee W.A., "A Single-Substrate Biosensor with Spin-Coated Liquid Crystal Film for Simple, Sensitive and Label-Free Protein Detection", Biosensors, 11:374, (2021). DOI: https://doi.org/10.3390/bios11100374
- [77] Kalkal A., Tiwari A., Sharma D., Baghel M.K., Kumar P., Pradhan R. and Packirisamy G., "Air-brush spray coated Ti3C2-MXene-graphene nanohybrid thin film based electrochemical biosensor for cancer biomarker detection", International Journal of Biological Macromolecules, 253:127260, (2023). DOI: https://doi.org/10.1016/j.ijbiomac.2023.127260
- [78] , Jeon Y., Lee D. and Yoo H., ''Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications'', Coatings, 12(2):204, (2022). DOI: https://doi.org/10.3390/coatings12020204
- [79] Dina N.E., Zhou H. and Colniţă A. , "Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy", Analyst, 142:1782–1789, (2017). DOI: https://doi.org/10.1039/C7AN00106A
- [80] Andrei C.C., Moraillon A., Lau S., Felidj N., Yamakawa N., Bouckaert J., Larquet E., Boukherroub R., Ozanam F., Szunerits S. and Chantal Gouget-Laemmel A., "Rapid and sensitive identification of uropathogenic Escherichia coli using a surface-enhanced-Raman-scattering-based biochip", Talanta, 219:121174, (2020). DOI: https://doi.org/10.1016/j.talanta.2020.121174
- [81] Najafi R., Mukherjee S., Hudson J., Sharma A. and Banerjee P., "Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering", International Journal of Food Microbiology, 189:89–97, (2014). DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.07.036
- [82] Temur E., Boyacı İ.H., Tamer U., Unsal H. and Aydogan N.A., "A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration", Analytical and Bioanalytical Chemistry, 397:1595–1604, (2010). DOI: https://doi.org/10.1007/s00216-010-3676-x
- [83] Bashir S., Nawaz H., Majeed M.I., Mohsin M., Abdullah S., Ali S, Rashid N., Kashif M., Batool F., Abubakar M. and Ahmad S., "Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools", Photodiagnosis and Photodynamic Therapy, 34:102280, (2021). DOI: https://doi.org/10.1016/j.pdpdt.2021.102280
- [84] Liu S., Hu Q., Li C., Zhang F., Gu H., Wang X., Li S., Xue L., Madl T., Zhang Y. and Zhou L., "Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy", ACS Sensors, 6:2911–2919, (2021). DOI: https://doi.org/10.1021/acssensors.1c00641
- [85] Salinas Domínguez R.A., Domínguez Jiménez M.Á. and Orduña Díaz A., "Antibody Immobilization in Zinc Oxide Thin Films as an Easy-Handle Strategy for Escherichia coli Detection", ACS Omega, 5:20473–20480, (2020). DOI: https://doi.org/10.1021/acsomega.0c02583
- [86] Kang H.J., Lee S.H., Kim H.S., Jung Y.W. and Park H-D., "Rapid and sensitive detection of gram-negative bacteria using surface-immobilized polymyxin B", PLoS ONE, 18:e0290579, (2023). DOI: https://doi.org/10.1371/journal.pone.0290579
- [87] Malhotra S., Pham D.S., Lau M.P., H., Nguyen A.H. and Cao H.A., "A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli", Sensors, 22:2382, (2022). DOI: https://doi.org/10.3390/s22062382
- [88] Giovanni M., Setyawati M.I., Tay C.Y., Qian H,, Kuan W.S. and Leong D.T., "Electrochemical Quantification of Escherichia coli with DNA Nanostructure", Advanced Functional Materials, 25:3840–3846, (2015). DOI: https://doi.org/10.1002/adfm.201500940
- [89] Zaraee N., Kanik F.E., Bhuiya A.M., Gong E.S., Geib M.T., Lortlar Ünlü N, Ozkumur AY., Dupuis JR. and Ünlü M.S., "Highly sensitive and label-free digital detection of whole cell E. coli with Interferometric Reflectance Imaging", Biosensors and Bioelectronics, 162:112258, (2020). DOI: https://doi.org/10.1016/j.bios.2020.112258
- [90] Choi J., Jeun M., Yuk S.S., Park S., Choi J., Lee D., Shin H., Kim H., Cho I-J., Kim S.K., Lee S., Song C.S. and Lee K.H., "Fully Packaged Portable Thin Film Biosensor for the Direct Detection of Highly Pathogenic Viruses from On-Site Samples", ACS Nano, 13:812–820, (2019). DOI: https://doi.org/10.1021/acsnano.8b08298
- [91] Ivanova E.P., Truong V.K., Wang J., Y., Berndt C.C., Jones R. T., Yusuf I.I., Peake I., Schmidt H.W., Fluke C., Barnes D. and Crawford RJ., "Impact of Nanoscale Roughness of Titanium Thin Film Surfaces on Bacterial Retention", Langmuir, 26:1973–1982, (2010). DOI: https://doi.org/10.1021/la902623c
- [92] Anisimkin V.I., Kuznetsova I.Е., Kolesov V.V., Pyataikin I., Sorokin V. and Skladnev D.A., "Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples", Ultrasonics, 62:156–159, (2015). DOI: https://doi.org/10.1016/j.ultras.2015.05.012
- [93] Liu K., Gong T., Luo Y., Kong W, Yue W, Wang C. and Luo X., "Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures", Optics Express, 31:15848–15863, (2023). DOI: https://doi.org/10.1364/OE.488410
- [94] Li N., Xu G., Yan M., Chen B., Yuan Y. and Zhu C., "Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates", Chemosensors, 11:210, (2023). DOI: https://doi.org/10.3390/chemosensors11040210
- [95] Maiolo L., Maita F., Del Rio De Vicente J.I., Lucarini I., Strisciullo G., Sablone S., Liscio A., Petrone G. and Mussi V., "Silver-coated ZnO disordered nanostructures as low-cost and label-free Raman biosensing platform for fast detection of complex organic profiles", Biosensors and Bioelectronics: X, 13:100309, (2023). DOI: https://doi.org/10.1016/j.biosx.2023.100309
- [96] Cross R.B.M. and De Souza M.M., "Investigating the stability of zinc oxide thin film transistors", Applied Physics Letters, 89:263513, (2006). DOI: https://doi.org/10.1063/1.2425020
- [97] Mora-Fonz D., Lazauskas T., Farrow M., R., Catlow C.R.A., Woodley S.M. and Sokol A.A., "Why Are Polar Surfaces of ZnO Stable?", Chemistry of Materials, 29:5306–5320, (2017). DOI: https://doi.org/10.1021/acs.chemmater.7b01487
- [98] Huyen L.T.M., Phuc N.T., Khanh H.T.D. and , Hung L.V.T., "Increasing charge transfer of SERS by the combination of amorphous Al2O3–Al thin film and ZnO nanorods decorated with Ag nanoparticles for trace detection of metronidazole", RSC Advances, 13:9732–9748, (2023). DOI: https://doi.org/10.1039/D3RA01134H
- [99] Kalasung S., Aiempanakit K., Chatnuntawech I., Limsuwan N., Lertborworn K., Patthanasettakul V., Horprathum M., Nuntawong N. and Eiamchai P., "Trace-level detection and classifications of pentaerythritol tetranitrate via geometrically optimized film-based Au/ZnO SERS sensors", Sensors and Actuators B: Chemical, 366:131986, (2022). DOI: https://doi.org/10.1016/j.snb.2022.131986
- [100] Yang L., Yang Y., Ma Y., Li S., Wei Y., Huang Z. and Long N.V., "Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application", Nanomaterials, 7:398, (2017). DOI: https://doi.org/10.3390/nano7110398
- [101] Zuzuarregui A., Souto D., Pérez-Lorenzo E., Arizti F., Sánchez-Gómez S., Tejada G.M. de, Brandenburg K., Arana S. and Mujika M., "Novel integrated and portable endotoxin detection system based on an electrochemical biosensor", Analyst, 140:654–660, (2014). DOI: https://doi.org/10.1039/C4AN01324G
- [102] Munief W.M., Lu X., Teucke T., Britz A., Hempel F., Lanche R., Schwartz M., Law J.K.Y, Grandthyll S., Müller F., Neurohr J-U., Jacobs K., Schmitt M., Pachauri V., Hempelmann R. and Ingebrandt S., "Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range", Biosensors and Bioelectronics, 126:136–142, (2019). DOI: https://doi.org/10.1016/j.bios.2018.09.102
- [103] Luka G., Ahmadi A., Najjaran H., Alocilja E., DeRosa M., Wolthers K., Malki A., Aziz H., Althani A. and Hoorfar M., "Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications", Sensors, 15:30011–30031, (2015). DOI: https://doi.org/10.3390/s151229783
- [104] Santos D.R., Soares R.R.G., , Chu V. and Conde J.P., "Performance of Hydrogenated Amorphous Silicon Thin Film Photosensors at Ultra-Low Light Levels: Towards Attomole Sensitivities in Lab-on-Chip Biosensing Applications", IEEE Sensors Journal, 17:6895–6903, (2017). DOI: https://doi.org/10.1109/JSEN.2017.2751253
İnce Film Sensörlerin Hijyenik Kalite İçin Kullanımı
Year 2025,
Early View, 1 - 1
Özkur Kuran
,
Duygu Takanoğlu Bulut
,
Ahmet Koluman
Abstract
Gıda hijyeniyle ilgili artan endişelere yanıt olarak, bakteriyel tespit için hızlı ve güvenilir yöntemlere acil bir talep vardır. Escherichia coli (E. coli), potansiyel fekal kontaminasyonu ve ilgili sağlık tehlikelerini tanımlayan önemli bir gösterge organizma olarak durmaktadır. Bu bilimsel araştırma, hızlı ve ayırt edici E. coli tespiti için ince film biyosensörlerin kullanılmasının uygulanabilirliğini araştırmakta ve böylece halk sağlığının korunmasında önemli adımlar atmaktadır. Bu araştırma, bu biyosensörleri yöneten temel ilkeleri vurgulamakta ve işlevselleştirmenin hassas yakalama ve tespiti kolaylaştırmadaki çok önemli rolünü vurgulamaktadır. İnce film imalatında kullanılan çeşitli malzemeler ve biriktirme teknikleri incelenerek, bunların kendi yararları ve zararları ortaya konmaktadır. Ayrıca bu çalışma, ince film biyosensörlerin bakteri tespitindeki çok yönlü uygulamalarını aydınlatan iki özel örneği sergilemektedir. İlk örnek, bakteriyofajlar tarafından kolaylaştırılan hedefli yakalama yoluyla sinyal amplifikasyonundan yararlanarak tek hücreli E. coli tespitinde ustalaşan yüzeyde geliştirilmiş Raman saçılımı (SERS) tabanlı bir nanobiyosensör çipini tanımlamaktadır. İkinci örnek, E. coli tespiti için immobilize antikorlarla işlevselleştirilmiş bir çinko oksit tabanlı (ZnO) ince filmden yararlanan uygun maliyetli bir stratejiyi tanımlamaktadır. Hem son derece hassas hem de ekonomik seçeneklerin ortaya konması, bakteriyel tehlikelerle mücadelede ince film biyosensörlerin uyarlanabilirliğinin altını çizmektedir. Sonraki araştırma çabaları, çeşitli ortamlarda kapsamlı bakteri tespiti sağlamak için hassasiyet, özgüllük ve çoğullama yeteneklerini artırmaya yönelik olmalıdır.
References
- [1] Fung F., Wang H.S. and Menon S., "Food safety in the 21st century", Biomedical Journal, 41:88–95, (2018). DOI: https://doi.org/10.1016/j.bj.2018.03.003
- [2] Duchenne-Moutien R.A. and Neetoo H., "Climate Change and Emerging Food Safety Issues: A Review", Journal of Food Protection, 84:1884–1897, (2021). DOI: https://doi.org/10.4315/JFP-21-141
- [3] Kevenk T., O. and Koluman A., "Invitro Decontamination Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Important Foodborne Pathogens", Etlik Veteriner Mikrobiyoloji Dergisi, 32:1–5, (2021). DOI: https://doi.org/10.1108/00070700410515175
- [4] Miles S., Brennan M., Kuznesof S., Ness M., Ritson C. and Frewer LJ., "Public worry about specific food safety issues", British Food Journal, 106:9–22, (2004). DOI: https://doi.org/10.1108/00070700410515172
- [5] Dua P., Ren S., Lee S.W., Kim J-K., Shin H., Jeong O-C., Kim S. and Lee D-K., "Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats", Molecules and Cells, 39:807–813, (2016). DOI: https://doi.org/10.14348/molcells.2016.0167
- [6] Bhardwaj D.K., Taneja N.K.S, Chakotiya A., Patel P., Taneja P., Sachdev D., Gupta S. and Sanal MG., "Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products", International Journal of Food Microbiology, 336:108899, (2021). DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108899
- [7] Al S., Uysal Ciloglu F., Akcay A. and Koluman A., "Machine learning models for prediction of Escherichia coli O157:H7 growth in raw ground beef at different storage temperatures", Meat Science, 210:109421, (2024). DOI: https://doi.org/10.1016/j.meatsci.2023.109421
- [8] Li F., Zhao Q., Wang C., Lu X., Li X-F. and Le X.C., "Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry", Analytical Chemistry, 82:3399–3403, (2010). DOI: https://doi.org/10.1021/ac9029883
- [9] Call D.R., Brockman F.J. and Chandler D.P., "Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays", International Journal of Food Microbiology, 67:71–80, (2001). DOI: https://doi.org/10.1021/ac100325f
- [10] Tawil N., Sacher E., Mandeville R. and Meunier M., "Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages", Biosensors and Bioelectronics, 37:24–29, (2012). DOI: https://doi.org/10.1016/j.bios.2012.04.048
- [11] Yan R., Shou Z., Chen J., Wu H, Zhao Y., Qiu L., Jiang P., Mou X-Z., Wang J-H. and Li Y-Q., "An On-Off-On Gold Nanocluster-Based Fluorescent Probe for Rapid Escherichia coli Differentiation, Detection and Bactericide Screening", ACS Sustainable Chemistry & Engineering, 6 (4):4504-4509, (2018).DOI: https://doi.org/10.1021/acssuschemeng.8b00112
- [12] Xing G., Zhang W. and Li N., "Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria", Chinese Chemical Letters, 33:1743–1751, (2022). DOI: https://doi.org/10.1016/j.cclet.2021.08.073
- [13] Athamanolap P., Hsieh K., Chen L., Yang S. and Wang T-H., "Integrated Bacterial Identification and Antimicrobial Susceptibility Testing Using PCR and High-Resolution Melt", Analytical Chemistry, 89:11529–11536, (2017). DOI: https://doi.org/10.1021/acs.analchem.7b02809
- [14] Lan L., Yao Y., Ping J. and Ying Y., "Recent advances in nanomaterial-based biosensors for antibiotics detection", Biosensors and Bioelectronics, 91:504–514, (2017). DOI: https://doi.org/10.1016/j.bios.2017.01.007. DOI: https://doi.org/10.1016/j.bios.2020.112276
- [15] Alafeef M., Moitra P. and Pan D., "Nano-enabled sensing approaches for pathogenic bacterial detection", Biosensors and Bioelectronics, 165:112276, (2020). DOI: https://doi.org/10.1016/j.bios.2020.112276
- [16] Mocan T., Matea C.T., Pop T., Mosteanu O., Buzoianu A.D., Puia C., Iancu C. and Mocan L., "Development of nanoparticle-based optical sensors for pathogenic bacterial detection", Journal of Nanobiotechnology, 15:25, (2017). DOI: https://doi.org/10.1186/s12951-017-0260-y
- [17] Ray P.C., Khan S.A., Singh A.K., Senapati D. and Fan Z., "Nanomaterials for targeted detection and photothermal killing of bacteria", Chemical Society Reviews, 41:3193, (2012). DOI: https://doi.org/10.1039/C2CS15340H
- [18] Shen Y., Zhang Y., Gao Z.F., Ye Y., Wu Q., Chen H-Y. and Xu J-J., "Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria", Nano Today, 38:101121, (2021). DOI: https://doi.org/10.1016/j.nantod.2021.101121
- [19] Galvin S., Dolan A., Cahill O., Daniels S. and Humphreys H., "Microbial monitoring of the hospital environment: why and how?", Journal of Hospital Infection, 82:143–151, (2012). DOI: https://doi.org/10.1016/j.jhin.2012.06.015
- [20] Liu X., Marrakchi M., Xu D., Dong H. and Andreescu S., "Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria", Biosensors and Bioelectronics, 80:9–16, (2016). DOI: https://doi.org/10.1016/j.bios.2016.01.041
- [21] Grossi M., Lazzarini R., Lanzoni M., Pompei A., Matteuzzi D. and Ricco B., "A Portable Sensor With Disposable Electrodes for Water Bacterial Quality Assessment", IEEE Sensors Journal, 13:1775–1782, (2013). DOI: https://doi.org/10.1109/JSEN.2013.2243142
- [22] Schaumburg F., Carrell C.S. and Henry C.S., "Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis", Analytical Chemistry, 91:9623–9630, (2019). DOI: https://doi.org/10.1021/acs.analchem.9b01002
- [23] Holm C. and Jespersen L., "A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria", Applied and Environmental Microbiology, 69:2857–2863, (2003). DOI: https://doi.org/10.1128/AEM.69.5.2857-2863.2003
- [24] Rubio E., Zboromyrska Y., Bosch J., Fernandez-Pittol M.J., Fidalgo B.I., Fasanella A., Mons A., Román A., Casals-Pascual C. and Vila J., "Evaluation of flow cytometry for the detection of bacteria in biological fluids", PLoS ONE, 14:e0220307, (2019). DOI: https://doi.org/10.1371/journal.pone.0220307
- [25] Becerra S.C., Roy D.C., Sanchez C.J., Christy R.J. and Burmeister D.M., "An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue", BMC Research Notes, 9:216, (2016). DOI: https://doi.org/10.1186/s13104-016-1902-0
- [26] Hameed S., Xie L. and Ying Y., "Conventional and emerging detection techniques for pathogenic bacteria in food science: A review", Trends in Food Science & Technology, 81:61–73, (2018). DOI: https://doi.org/10.1016/j.tifs.2018.05.020
- [27] Kumar S., Gopinathan R., Chandra G.K., Umapathy S. and Saini D.K., "Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy", Analytical and Bioanalytical Chemistry, 412:2505–2516, (2020). DOI: https://doi.org/10.1007/s00216-020-02474-2
- [28] Koluman A,. Celik G. and Unlu T., "Salmonella identification from foods in eight hours: A prototype study with Salmonella Typhimurium", Iranian Journal of Microbiology, 4:15–24, (2012). PMID: 22783456; PMCID: PMC3391555
- [29] Aksu F., Altunatmaz S.S., Issa G., Aksoy A. and Aksu H., "Prevalence of Cronobacter spp. in various foodstuffs and identification by multiplex PCR", Food Science and Technology, 39:729–734, (2019). DOI: https://doi.org/10.1590/fst.06818
- [30] Farouk F., Essam S., Abdel-Motaleb A., El-Shimy R., Fritzsche W. and Azzazy HME-S., "Fast detection of bacterial contamination in fresh produce using FTIR and spectral classification", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 277:121248, (2022). DOI: https://doi.org/10.1016/j.saa.2022.121248
- [31] Chung H.J., Castro C.M., Im H., Lee H. and Weissleder R., "A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria", Nature Nanotechnology, 8:369–375, (2013). DOI: https://doi.org/10.1038/nnano.2013.70
- [32] Eltzov E., Yehuda A. and Marks R.S., "Creation of a new portable biosensor for water toxicity determination", Sensors and Actuators B: Chemical, 221:1044–1054, (2015). DOI: https://doi.org/10.1016/j.snb.2015.06.153
- [33] Le N.T.H., Viet N.X., Anh N.V., Bach T.N., Thu P.T., Ngoc N.T., Manh D.H., Ky V.H., Lam V.D., Kodelov V., Von Gratowski S., Binh N.H. and Anh T.X., "Non-enzymatic electrochemical sensor based on ZnO nanoparticles/porous graphene for the detection of hypoxanthine in pork meat", AIP Advances, 14:025034, (2024). DOI: https://doi.org/10.1063/5.0190293
- [34] Massad-Ivanir N., Shtenberg G., Tzur A., Krepker M.A. and Segal E., "Engineering Nanostructured Porous SiO2 Surfaces for Bacteria Detection via “Direct Cell Capture”", Analytical Chemistry, 83:3282–3289, (2011). DOI: https://doi.org/10.1021/ac200407w
- [35] Srivastava S.K., Hamo H.B., Kushmaro A., Marks R.S., Grüner C., Rauschenbach B. and Abdulhalim I., "Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films", Analyst, 140:3201–3209, (2015). DOI: https://doi.org/10.1039/C5AN00209E
- [36] Massad-Ivanir N., Shtenberg G., Raz N., Gazenbeek C., Budding D., Bos M.P. and Segal E., "Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry", Scientific Reports, 6:38099, (2016). DOI: https://doi.org/10.1038/srep38099
- [37] Castillo-Henríquez L., Brenes-Acuña M., Castro-Rojas A., Cordero-Salmerón R., Lopretti-Correa M. and Vega-Baudrit J.R., "Biosensors for the Detection of Bacterial and Viral Clinical Pathogens", Sensors, 20:6926, (2020). DOI: https://doi.org/10.3390/s20236926
- [38] Hurk R.V.D. and Evoy S., "A Review of Membrane-Based Biosensors for Pathogen Detection", Sensors, 15:14045–14078, (2015). DOI: https://doi.org/10.3390/s150614045
- [39] Kumar A., Kumar Goyal A. and Gupta N., " Review Thin-Film Transistors (TFTs) for Highly Sensitive Biosensing Applications: A Review ", ECS Journal of Solid State Science and Technology, 9:11 115022, (2020). DOI: https://doi.org/10.1149/2162-8777/abb2b3
- [40] Tenenbaum E. and Segal E., "Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound", Analyst, 140:7726–7733, (2015). DOI: https://doi.org/10.1039/C5AN01717C
- [41] Galvan D.D., Parekh V., Liu E., Liu E-L. and Yu Q., "Sensitive Bacterial Detection via Dielectrophoretic-Enhanced Mass Transport Using Surface-Plasmon-Resonance Biosensors", Analytical Chemistry, 90:14635–14642, (2018). DOI: https://doi.org/10.1021/acs.analchem.8b05137
- [42] Jenison R., Jaeckel H., Klonoski J., Latorra D. and Wiens J., "Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor", Analyst, 139:3763–3769, (2014). DOI: https://doi.org/10.1039/C4AN00418C
- [43] Goronzy J.J. and Weyand C., M., "Understanding immunosenescence to improve responses to vaccines", Nature Immunology, 14:428–436, (2013). DOI: https://doi.org/10.1038/ni.2588
- [44] Felix F.S. and Angnes L., "Electrochemical immunosensors–A powerful tool for analytical applications", Biosensors and Bioelectronics, 102:470–478, (2018). DOI: https://doi.org/10.1016/j.bios.2017.11.029
- [45] De La Escosura-Muñiz A., Parolo C. and Merkoçi A., "Immunosensing using nanoparticles", Materials Today, 13:24–34, (2010). DOI: https://doi.org/10.1016/j.bios.2018.11.035
- [46] George S.M., Tandon S. and Kandasubramanian B., "Advancements in Hydrogel-Functionalized Immunosensing Platforms", ACS Omega, 5:2060–2068, (2020). DOI: https://doi.org/10.1021/acsomega.9b03816
- [47] Shaikh M.O., Zhu P-Y., Wang C-C., Du Y-C. and Chuang C-H., "Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care", Biosensors and Bioelectronics, 126:572–580, (2019). DOI: https://doi.org/10.1016/j.bios.2018.11.035
- [48] Arcadio F., Marzano C., Del Prete D., Zeni L. and Cennamo N., "Analysis of Plasmonic Sensors Performance Realized by Exploiting Different UV-Cured Optical Adhesives Combined with Plastic Optical Fibers", Sensors, 23:6182, (2023). DOI: https://doi.org/10.3390/s23136182
- [49] Park J.H., Cho Y.W. and Kim T.H., "Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens", Biosensors, 12:180, (2022). DOI: https://doi.org/10.3390/bios12030180
- [50] Thakur A., Kumar A., Kaya S., Marzouki R., Zhang F. and Guo L., "Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants", Coatings, 12:1459, (2022). DOI: https://doi.org/10.3390/coatings12101459
- [51] Nukaly H.Y., Ansari S.A., Nukaly H.Y. and Ansari S.A., "An Insight Into the Physicochemical Properties of Gold Nanoparticles in Relation to Their Clinical and Diagnostic Applications", Cureus, 5(4):e37803, (2023). DOI: https://doi.org/10.7759/cureus.37803
- [52] Duarte D.P., Alberto N., Bilro L. and Nogueira R., "Theoretical Design of a High Sensitivity SPR-Based Optical Fiber Pressure Sensor", Journal of Lightwave Technology, 33:4606–4611, (2015). DOI: https://doi.org/10.1109/JLT.2015.2477353
- [53] Borah S.B.D., Bora T., Baruah S. and Dutta J., "Heavy metal ion sensing in water using surface plasmon resonance of metallic nanostructures", Groundwater for Sustainable Development, 1:1–11, (2015). DOI: https://doi.org/10.1016/j.gsd.2015.12.004
- [54] Shukla S., Sharma N.K. and Sajal V., "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study", Sensors and Actuators B: Chemical, 206:463–470, (2015). DOI: https://doi.org/10.1016/j.snb.2014.09.083
- [55] Rim Y.S., "Review of metal oxide semiconductors-based thin-film transistors for point-of-care sensor applications", Journal of Information Display, 21:203–210, (2020). DOI: https://doi.org/10.1080/15980316.2020.1714762
- [56] Liu B. and Liu J., "Sensors and biosensors based on metal oxide nanomaterials", TrAC Trends in Analytical Chemistry, 121:115690, (2019). DOI: https://doi.org/10.1016/j.trac.2019.115690
- [57] Butler S.K., Li F., Chaube R., Laskowski D. and Liu CC., "A Single Use Biosensor for the Detection of Nitric Oxide (NO) at ppb and sub-μM Level in Gas-and Liquid- Phase Media", Current Biomarkers, 6(1):3–9, (2016). DOI: http://doi.org/10.2174/2210309006666160502112925
- [58] Li T., Xu T., Yao Z., Ding Y., Liu G. and Shan F., "Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson’s disease", Applied Physics Letters, 122:243701, (2023). DOI: https://doi.org/10.1063/5.0151300
- [59] Şerban I. and Enesca A., "Metal Oxides-Based Semiconductors for Biosensors Applications", Frontiers in Chemistry, 8:354, (2020). DOI: https://doi.org/10.3389/fchem.2020.00354
- [60] Solanki P.R., Kaushik A., Agrawal VV. . and Malhotra B.D., "Nanostructured metal oxide-based biosensors", NPG Asia Materials, 3:17–24, (2011). DOI: https://doi.org/10.1038/asiamat.2010.137
- [61] Li W. and Min J., "Responsive polymer thin films", Journal of Polymer Science, 61:993–995, (2023). DOI: https://doi.org/10.1002/pol.20230265
- [62] Ozaydin Ince G., Coclite A.M. and Gleason K.K., "CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes", Reports on Progress in Physics, 75:016501, (2011). DOI: https://doi.org/10.1088/0034-4885/75/1/016501
- [63] Khan A.A.P, Khan A., Rahman M.M., Asiri A.M. and Oves M., "Sensor development of 1,2 Dichlorobenzene based on polypyrole/Cu-doped ZnO (PPY/CZO) nanocomposite embedded silver electrode and their antimicrobial studies", International Journal of Biological Macromolecules, 98:256–267, (2017). DOI: https://doi.org/10.1016/j.ijbiomac.2017.02.005
- [64] Da Silva J.S.L., Oliveira M.D.L., De Melo C.P. and Andrade C.A.S., "Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films", Colloids and Surfaces B: Biointerfaces, 117:549–554, (2014). DOI: https://doi.org/10.1016/j.colsurfb.2013.12.057
- [65] Bhattacharyya N., Bhattacharyya S., Ghosh K., Pal S., Jana A. and Mukherjee S., "Fabrication of sensor technology using thin films for biosensing, agricultural and environmental applications", Comprehensive Materials Processing 2 nd ed., Elsevier, Amsterdam, (2023). DOI: https://doi.org/10.1016/B978-0-323-96020-5.00059-5
- [66] Zhang Z., Hossain M.F., Arakawa T. and Takahashi T., "Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application", Journal of Hazardous Materials, 176:973–978, (2010). DOI: https://doi.org/10.1016/j.jhazmat.2009.11.136
- [67] Uzun Y., Kuran O. and Avcı İ., "Fabrication of Superconducting YBa2Cu3O7−x Thin Films on Si Wafer via YSZ/CeO2 buffer layers", Journal of Superconductivity and Novel Magnetism, 30: 2335–2340, (2017). DOI: https://doi.org/10.1007/s10948-016-3846-y
- [68] Smentkowski V., S., "Trends in sputtering", Progress in Surface Science, 64:1–58, (2000). DOI: https://doi.org/10.1016/S0079-6816(99)00021-0
- [69] Rossnagel S.M., "Magnetron sputtering", Journal of Vacuum Science & Technology A, 38: 060805, (2020). DOI: https://doi.org/10.1116/6.0000594
- [70] Hora J., Hall C., Evans D. and Charrault E., "Inorganic Thin Film Deposition and Application on Organic Polymer Substrates", Advanced Engineering Materials, 20:1700868, (2018). DOI: https://doi.org/10.1002/adem.201700868
- [71] Gad S., Rafea M.A. and Badr Y., "Optical and photoconductive properties of Pb0.9Sn0.1Se nano-structured thin films deposited by thermal vacuum evaporation and pulsed laser deposition", Journal of Alloys and Compounds, 515:101–107, (2012). DOI: https://doi.org/10.1016/j.jallcom.2011.11.100
- [72] Wang L., Mao W., Ni D., Di J., Wu Y. and Tu Y., "Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor", Electrochemistry Communications, 10:673–676, (2008). DOI: https://doi.org/10.1016/j.elecom.2008.02.009
- [73] Zhang X., Guo S. and Han Y. "Beyond Conventional Patterns: New Electrochemical Lithography with High Precision for Patterned Film Materials and Wearable Sensors", Analytical Chemistry, 89:2569–2574, (2017). DOI: https://doi.org/10.1021/acs.analchem.6b04816
- [74] Crosley M.S. and Yip W.T., "Kinetically Doped Silica Sol–Gel Optical Biosensors: Expanding Potential Through Dip-Coating", ACS Omega, 3:7971–7978, (2018). DOI: https://doi.org/10.1021/acsomega.8b00897
- [75] Aylott J.W., Richardson D.J. and Russell D.A., "Optical Biosensing of Gaseous Nitric Oxide Using Spin-Coated Sol−Gel Thin Films", Chemistry of Materials, 9(11):2261–2263, (1997). DOI: https://doi.org/10.1021/cm970324v
- [76] Wu P.C., Pai C.P., Lee M.J. and Lee W.A., "A Single-Substrate Biosensor with Spin-Coated Liquid Crystal Film for Simple, Sensitive and Label-Free Protein Detection", Biosensors, 11:374, (2021). DOI: https://doi.org/10.3390/bios11100374
- [77] Kalkal A., Tiwari A., Sharma D., Baghel M.K., Kumar P., Pradhan R. and Packirisamy G., "Air-brush spray coated Ti3C2-MXene-graphene nanohybrid thin film based electrochemical biosensor for cancer biomarker detection", International Journal of Biological Macromolecules, 253:127260, (2023). DOI: https://doi.org/10.1016/j.ijbiomac.2023.127260
- [78] , Jeon Y., Lee D. and Yoo H., ''Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications'', Coatings, 12(2):204, (2022). DOI: https://doi.org/10.3390/coatings12020204
- [79] Dina N.E., Zhou H. and Colniţă A. , "Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy", Analyst, 142:1782–1789, (2017). DOI: https://doi.org/10.1039/C7AN00106A
- [80] Andrei C.C., Moraillon A., Lau S., Felidj N., Yamakawa N., Bouckaert J., Larquet E., Boukherroub R., Ozanam F., Szunerits S. and Chantal Gouget-Laemmel A., "Rapid and sensitive identification of uropathogenic Escherichia coli using a surface-enhanced-Raman-scattering-based biochip", Talanta, 219:121174, (2020). DOI: https://doi.org/10.1016/j.talanta.2020.121174
- [81] Najafi R., Mukherjee S., Hudson J., Sharma A. and Banerjee P., "Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering", International Journal of Food Microbiology, 189:89–97, (2014). DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.07.036
- [82] Temur E., Boyacı İ.H., Tamer U., Unsal H. and Aydogan N.A., "A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration", Analytical and Bioanalytical Chemistry, 397:1595–1604, (2010). DOI: https://doi.org/10.1007/s00216-010-3676-x
- [83] Bashir S., Nawaz H., Majeed M.I., Mohsin M., Abdullah S., Ali S, Rashid N., Kashif M., Batool F., Abubakar M. and Ahmad S., "Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools", Photodiagnosis and Photodynamic Therapy, 34:102280, (2021). DOI: https://doi.org/10.1016/j.pdpdt.2021.102280
- [84] Liu S., Hu Q., Li C., Zhang F., Gu H., Wang X., Li S., Xue L., Madl T., Zhang Y. and Zhou L., "Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy", ACS Sensors, 6:2911–2919, (2021). DOI: https://doi.org/10.1021/acssensors.1c00641
- [85] Salinas Domínguez R.A., Domínguez Jiménez M.Á. and Orduña Díaz A., "Antibody Immobilization in Zinc Oxide Thin Films as an Easy-Handle Strategy for Escherichia coli Detection", ACS Omega, 5:20473–20480, (2020). DOI: https://doi.org/10.1021/acsomega.0c02583
- [86] Kang H.J., Lee S.H., Kim H.S., Jung Y.W. and Park H-D., "Rapid and sensitive detection of gram-negative bacteria using surface-immobilized polymyxin B", PLoS ONE, 18:e0290579, (2023). DOI: https://doi.org/10.1371/journal.pone.0290579
- [87] Malhotra S., Pham D.S., Lau M.P., H., Nguyen A.H. and Cao H.A., "A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli", Sensors, 22:2382, (2022). DOI: https://doi.org/10.3390/s22062382
- [88] Giovanni M., Setyawati M.I., Tay C.Y., Qian H,, Kuan W.S. and Leong D.T., "Electrochemical Quantification of Escherichia coli with DNA Nanostructure", Advanced Functional Materials, 25:3840–3846, (2015). DOI: https://doi.org/10.1002/adfm.201500940
- [89] Zaraee N., Kanik F.E., Bhuiya A.M., Gong E.S., Geib M.T., Lortlar Ünlü N, Ozkumur AY., Dupuis JR. and Ünlü M.S., "Highly sensitive and label-free digital detection of whole cell E. coli with Interferometric Reflectance Imaging", Biosensors and Bioelectronics, 162:112258, (2020). DOI: https://doi.org/10.1016/j.bios.2020.112258
- [90] Choi J., Jeun M., Yuk S.S., Park S., Choi J., Lee D., Shin H., Kim H., Cho I-J., Kim S.K., Lee S., Song C.S. and Lee K.H., "Fully Packaged Portable Thin Film Biosensor for the Direct Detection of Highly Pathogenic Viruses from On-Site Samples", ACS Nano, 13:812–820, (2019). DOI: https://doi.org/10.1021/acsnano.8b08298
- [91] Ivanova E.P., Truong V.K., Wang J., Y., Berndt C.C., Jones R. T., Yusuf I.I., Peake I., Schmidt H.W., Fluke C., Barnes D. and Crawford RJ., "Impact of Nanoscale Roughness of Titanium Thin Film Surfaces on Bacterial Retention", Langmuir, 26:1973–1982, (2010). DOI: https://doi.org/10.1021/la902623c
- [92] Anisimkin V.I., Kuznetsova I.Е., Kolesov V.V., Pyataikin I., Sorokin V. and Skladnev D.A., "Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples", Ultrasonics, 62:156–159, (2015). DOI: https://doi.org/10.1016/j.ultras.2015.05.012
- [93] Liu K., Gong T., Luo Y., Kong W, Yue W, Wang C. and Luo X., "Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures", Optics Express, 31:15848–15863, (2023). DOI: https://doi.org/10.1364/OE.488410
- [94] Li N., Xu G., Yan M., Chen B., Yuan Y. and Zhu C., "Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates", Chemosensors, 11:210, (2023). DOI: https://doi.org/10.3390/chemosensors11040210
- [95] Maiolo L., Maita F., Del Rio De Vicente J.I., Lucarini I., Strisciullo G., Sablone S., Liscio A., Petrone G. and Mussi V., "Silver-coated ZnO disordered nanostructures as low-cost and label-free Raman biosensing platform for fast detection of complex organic profiles", Biosensors and Bioelectronics: X, 13:100309, (2023). DOI: https://doi.org/10.1016/j.biosx.2023.100309
- [96] Cross R.B.M. and De Souza M.M., "Investigating the stability of zinc oxide thin film transistors", Applied Physics Letters, 89:263513, (2006). DOI: https://doi.org/10.1063/1.2425020
- [97] Mora-Fonz D., Lazauskas T., Farrow M., R., Catlow C.R.A., Woodley S.M. and Sokol A.A., "Why Are Polar Surfaces of ZnO Stable?", Chemistry of Materials, 29:5306–5320, (2017). DOI: https://doi.org/10.1021/acs.chemmater.7b01487
- [98] Huyen L.T.M., Phuc N.T., Khanh H.T.D. and , Hung L.V.T., "Increasing charge transfer of SERS by the combination of amorphous Al2O3–Al thin film and ZnO nanorods decorated with Ag nanoparticles for trace detection of metronidazole", RSC Advances, 13:9732–9748, (2023). DOI: https://doi.org/10.1039/D3RA01134H
- [99] Kalasung S., Aiempanakit K., Chatnuntawech I., Limsuwan N., Lertborworn K., Patthanasettakul V., Horprathum M., Nuntawong N. and Eiamchai P., "Trace-level detection and classifications of pentaerythritol tetranitrate via geometrically optimized film-based Au/ZnO SERS sensors", Sensors and Actuators B: Chemical, 366:131986, (2022). DOI: https://doi.org/10.1016/j.snb.2022.131986
- [100] Yang L., Yang Y., Ma Y., Li S., Wei Y., Huang Z. and Long N.V., "Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application", Nanomaterials, 7:398, (2017). DOI: https://doi.org/10.3390/nano7110398
- [101] Zuzuarregui A., Souto D., Pérez-Lorenzo E., Arizti F., Sánchez-Gómez S., Tejada G.M. de, Brandenburg K., Arana S. and Mujika M., "Novel integrated and portable endotoxin detection system based on an electrochemical biosensor", Analyst, 140:654–660, (2014). DOI: https://doi.org/10.1039/C4AN01324G
- [102] Munief W.M., Lu X., Teucke T., Britz A., Hempel F., Lanche R., Schwartz M., Law J.K.Y, Grandthyll S., Müller F., Neurohr J-U., Jacobs K., Schmitt M., Pachauri V., Hempelmann R. and Ingebrandt S., "Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range", Biosensors and Bioelectronics, 126:136–142, (2019). DOI: https://doi.org/10.1016/j.bios.2018.09.102
- [103] Luka G., Ahmadi A., Najjaran H., Alocilja E., DeRosa M., Wolthers K., Malki A., Aziz H., Althani A. and Hoorfar M., "Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications", Sensors, 15:30011–30031, (2015). DOI: https://doi.org/10.3390/s151229783
- [104] Santos D.R., Soares R.R.G., , Chu V. and Conde J.P., "Performance of Hydrogenated Amorphous Silicon Thin Film Photosensors at Ultra-Low Light Levels: Towards Attomole Sensitivities in Lab-on-Chip Biosensing Applications", IEEE Sensors Journal, 17:6895–6903, (2017). DOI: https://doi.org/10.1109/JSEN.2017.2751253