Year 2025,
Early View, 1 - 1
Ali Arslantas
,
Mehmet Salih Ağırtaş
,
Derya Güngördü Solğun
References
- [1] Eshkourfu, R., Cobeljic, B., Vujcic, M., Turel, I., Pevec, A., Sepcic, K., Zec, M., Radulovic, S., Srdic-Radic, T., Mitic, D., Andjelkovic, K., and Sladic, D., “Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of acetylpyridine and malonic acid dihydrazide”, Journal of Inorganic Biochemistry, 105: 1196-1203, (2011). DOI: https://doi.org/10.1016/j.jinorgbio.2011.05.024
- [2] Li, Y., Yang, Z.Y., and Wang, M.F., “Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with hesperetin-4-one-(benzoyl) hydrazone”, European Journal of Medicinal Chemistry, 44: 4585-4595, (2009). DOI: https://doi.org/10.1016/j.ejmech.2009.06.027
- [3] Barton, J., “Metals and DNA: molecular left-handed complements”, Science, 233: 727-734, (1986). DOI: https://doi.org/10.1126/science.3016894
- [4] Sigman, D.S., Mazumder, A., and Perrin, D.M., “Chemical nucleases”, Chemical Reviews, 93: 2295 –2316, (1993). DOI: https://doi.org/10.12691/bb-2-1-1
- [5] Özel, A., Barut, B., Demirbaş, Ü., and Biyiklioglu, Z., “Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds”, Journal of Photochemistry Photobiology B Biology, 157: 32-38, (2016). DOI: https://doi.org/10.1016/j.jphotobiol.2016.02.005
- [6] Ağırtaş, M.S., Cabir, B., and Özdemir, S., “Novel metal (II) phthalocyanines with 3,4,5- trimethoxybenzyloxy-substituents: synthesis, characterization, aggregation behaviour and antioxidant activity”, Dyes and Pigments, 96: 152-157, (2013). DOI: https://doi.org/10.1016/j.dyepig.2012.07.023
- [7] Tretyakova, I.N., Chernii, V.Y., Tomachynski, L.A., and Volkov, S.V., “Synthesis and luminescent properties of new zirconium (IV) and hafnium (IV) phthalocyanines with various carbonic acids as out-planed ligands”, Dyes and Pigments, 75: 67-72, (2007). DOI: https://doi.org/10.1016/j.dyepig.2006.05.013
- [8] Haimovici, R., Ciulla, T.A., Miller, J.W., Hasan, T., Flotte, T.J., Kenney, A.G., Schomacker, K.T., and Gragoudas, E.S., “Localization of rose bengal, aluminum phthalocyaninetetrasulfonate, and chlorin e(6) in the rabbit eye”, Retina, 22: 65-74, (2002). DOI: https://doi.org/10.1097/00006982-200202000-00012
- [9] Eldar, M., Yerushalmi, Y., Kessler, E., Scheinowitz, M., Goldbourt, U., Ben-Hur, E., Rosenthal, I., and Battler, A., “Preferential uptake of a water-soluble phthalocyanine by atherosclerotic plaques in rabbits”, Atherosclerosis, 84: 135-139, (1990). DOI: https://doi.org/10.1016/0021-9150(90)90083-u
- [10] Amaral, G.P., Puntel, G.O., Corte, C.L.D., Dobrachinski, F., Barcelos, R.P., Bastos, L.L., Avilla, D.S., Rocha, J.B.T., da Silva, E.O., Puntel, R.L., and Soares, F.A.A., “The antioxidant properties of different phthalocyanines”, Toxicology in Vitro, 26: 125-132, (2012). DOI: https://doi.org/10.1016/j.tiv.2011.10.006
- [11] Uslan, C., and Sesalan, Ş., “Synthesis of novel DNA-interacting phthalocyanines”, Dyes and Pigments, 94: 127-135, (2012). DOI: https://doi.org/10.1016/j.dyepig.2011.12.003
- [12] Nishiyama, N., Jang, W.D., and Kataoka, K., “Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery”, New Journal of Chemistry, 31: 1074-1082, (2007). DOI: https://doi.org/10.1039/B616050F
- [13] Tamaki, Y., “Prospects for nanomedicine in treating age-related macular degeneration”, Nanomedicine, 4: 341-354, (2009). DOI: https://doi.org/10.2217/nnm.09.10
- [14] Mao, J.F., Zhang, Y., Zhu, J., Zhang, C., and Guo, Z., “Molecular combo of photodynamictherapeutic
agent silicon(IV) phthalocyanine and anticancer drug cisplatin”, Chemical Communication, 8: 908-910, (2009). DOI: https://doi.org/10.1039/B817968A
- [15] Yabaş, E., Bağda, E., and Bağda, E., “The water soluble ball-type phthalocyanine as new potential anticancer drugs”, Dyes and Pigments, 120: 220-227, (2015). DOI: https://doi.org/10.1016/j.dyepig.2015.03.038
- [16] Rosenberg, B., Camp, L.V., Trosko, J.E., and Mansour, V.H., “Platinum compounds: a new class of potent antitumour agents”, Nature, 222: 385-386, (1969). DOI: https://doi.org/10.1038/222385a0
- [17] Banerjee, S.M., MacRobert, A.J., Mosse, C.A., Periera, B., Bown, S.G., and Keshtgar, M.R.S., Photodynamic therapy: Inception to application in breast cancer”, Breast, 31: 105-113, (2017). DOI: https://doi.org/105.10.1016/j.breast.2016.09.016
- [18] Bas¸ H., Biyiklioglu, Z., Barut, B., Yalçın, C.Ö., and Ozel, A., “Highly water soluble axial disubstituted silicon(IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines”, Inorganic Chemistry Communication, 156: 111139, (2023). DOI: https://doi.org/10.1016/j.inoche.2023.111139
- [19] Keles, T., Barut, B., Biyiklioglu, Z., and Ozel, A., “A comparative study on DNA / BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn(III), Cu (II) phthalocyanines”, Dyes and Pigments, 139: 575–586, (2017). DOI: https://doi.org/10.1016/j.dyepig.2016.12.045
- [20] Amitha, G.S., and Vasudevan, S., “DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines”, Polyhedron, 190: 114773, (2020). DOI: https://doi.org/10.1016/j.poly.2020.114773
- [21] Güngördü Solğun, D., Horoz, S., and Ağırtaş, M.S., “Synthesis of novel tetra (4-tritylphenoxy) substituted metallophthalocyanines and investigation of their aggregation, photovoltaic, solar cell properties”, Inorganic and Nano-Metal Chemistry, 48(10): 508-514, (2018). DOI: https://doi.org/10.1080/24701556.2019.1572624
- [22] Marmur, J., “A procedure for the isolation of deoxyribonucleic acid from microorganisms”, Journal of Molecular Biology, 3: 208-218, (1961). DOI: https://doi.org/10.1016/S0022-2836(61)80047-8
- [23] Wolfe, A., Shimer, G.H., and Meehan, T., “Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA”, Biochemistry, 26: 6392-6396, (1987). DOI: https://doi.org/10.1021/bi00394a013
- [24] Barut, B., Sofuoglu, A., Biyiklioglu, Z., and Özel, A., “The water soluble peripherally tetra-substituted zinc (II), manganese (III) and copper (II) phthalocyanines as new potential anticancer agents”, Dalton Transactions, 45: 14301-14310, (2016). DOI: https://doi.org/10.1039/C6DT02720B
- [25] Esenpınar, A.A., Durmus, M., and Bulut, M., “Photophysical, photochemical and BSA binding/BQ quenching properties of quaternizable coumarin containing water soluble zinc phthalocyanine complexes”, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 79: 608-617, (2011). DOI: https://doi.org/10.1016/j.saa.2011.03.043
- [26] Sirajuddin, M., Ali, S., and Badshah, A., “Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry”, Journal of Photochemistry Photobiology B Biology, 124: 1-19, (2013). DOI: https://doi.org/10.1016/j.jphotobiol.2013.03.013
- [27] Gonzalez-Ruiz, V., Olives, A.I., Martin, M.A., Ribelles, P., Ramos, M.T., and Menendez, J. C., “An overview of analytical techniques employed to evidence drug–DNA interactions. Applications to the Design of Genosensors”, In Techopen, 65: 3-664, (2011). DOI: https://doi.org/10.5772/13586
- [28] Zipper, H., Brunner, H., Bernhagen, J., and Vitzthum, F., “Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications”, Nucleic Acids Research, 32(12): e103, (2004). DOI: https://doi.org/10.1093/nar/gnh101
- [29] Umemura, K., Nagami, F., Okada, T., and Kuroda, R., “AFM characterization of single strand-specific endonuclease activity on linear DNA”, Nucleic Acids Research, 28: e39, (2000). DOI: https://doi.org/10.1093/nar/28.9.e39
- [30] Mudasir, M., Wahyuni, E.T., Tjahjono, D.H., N., Yoshioka, N., and Inoue, H., “Spectroscopic studies on the thermodynamic and thermal denaturation of the CT-DNA binding of methylene blue”, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 77: 528-534, (2010). DOI: https://doi.org/10.1016/j.saa.2010.06.032
- [31] Norden, B., and Tjerneld, F., “Binding of inert metal complexes to deoxyribonucleic acid detected by linear dichroism”, FEBS Letters, 67(3): 368-370, (1976). DOI: https://doi.org/10.1016/0014-5793(76)80566-2
- [32] Waring, M.J., “Complex formation between ethidium bromide and nucleic acids”, Journal of Molecular Biology, 13: 269-282, (1965). DOI: https://doi.org/10.1016/s0022-2836(65)80096-1
- [33] Neyhart, G.A., Grover, N., Smith, S.R., Kalsbeck, W.A., Fairly, T.A., Cory, M., and Thorp, H.H., “Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV)”, Journal of American Chemical Society, 115: 4423-4428, (1993). DOI: https://doi.org/10.1021/ja00064a001
- [34] Arslantas, A., and Agirtas, M.S., “Investigation of DNA binding activities of peripherally 2,10,16,24-tetrakis dimethyl 5-(phenoxy)-isophthalate-substituted Ni(II) phthalocyanine complex”, Chemistryselect, 3(11): 3155-3160, (2018). DOI: https://doi.org/10.1002/slct.201800572
Spectroscopic Evaluation of DNA Binding Activities of Copper (II) Phthalocyanine Complex Consisting of Tetrakis-(4-Tritylphenoxy) Ligand
Year 2025,
Early View, 1 - 1
Ali Arslantas
,
Mehmet Salih Ağırtaş
,
Derya Güngördü Solğun
Abstract
The structure and basic properties of Cu(II) phthalocyanine compound possessing tetrakis-(4-tritylphenoxy) group were elucidated in a past study with the help of absorption and infrared spectroscopic equipments. The electronic spectra, emission spectroscopy, gel agarose electrophoresis and thermal melting were employed to reveal the DNA interaction functions of this complex at changing concentrations of CT-DNA. In this experiment, the binding constant for the Cu(II) phthalocyanine compound which contains the tetrakis(4-tritylphenoxy) group was computed to be 1.53 x 106 M-1. The data obtained from absorption and fluorescence spectroscopic studies revealed that the CuPc compound reacted with CT-DNA through an intercalating mechanism. Well as the above methods, melting temperature and electrophoresis were also employed to analyse the interaction feature of CuPc with DNA. The interaction of the CuPc compound with DNA was also confirmed by data from melting temperature and electrophoresis experiments. Within the framework of the results obtained, it is predicted that CuPc compound may be a possible cancer therapeutic agent.
References
- [1] Eshkourfu, R., Cobeljic, B., Vujcic, M., Turel, I., Pevec, A., Sepcic, K., Zec, M., Radulovic, S., Srdic-Radic, T., Mitic, D., Andjelkovic, K., and Sladic, D., “Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of acetylpyridine and malonic acid dihydrazide”, Journal of Inorganic Biochemistry, 105: 1196-1203, (2011). DOI: https://doi.org/10.1016/j.jinorgbio.2011.05.024
- [2] Li, Y., Yang, Z.Y., and Wang, M.F., “Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with hesperetin-4-one-(benzoyl) hydrazone”, European Journal of Medicinal Chemistry, 44: 4585-4595, (2009). DOI: https://doi.org/10.1016/j.ejmech.2009.06.027
- [3] Barton, J., “Metals and DNA: molecular left-handed complements”, Science, 233: 727-734, (1986). DOI: https://doi.org/10.1126/science.3016894
- [4] Sigman, D.S., Mazumder, A., and Perrin, D.M., “Chemical nucleases”, Chemical Reviews, 93: 2295 –2316, (1993). DOI: https://doi.org/10.12691/bb-2-1-1
- [5] Özel, A., Barut, B., Demirbaş, Ü., and Biyiklioglu, Z., “Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds”, Journal of Photochemistry Photobiology B Biology, 157: 32-38, (2016). DOI: https://doi.org/10.1016/j.jphotobiol.2016.02.005
- [6] Ağırtaş, M.S., Cabir, B., and Özdemir, S., “Novel metal (II) phthalocyanines with 3,4,5- trimethoxybenzyloxy-substituents: synthesis, characterization, aggregation behaviour and antioxidant activity”, Dyes and Pigments, 96: 152-157, (2013). DOI: https://doi.org/10.1016/j.dyepig.2012.07.023
- [7] Tretyakova, I.N., Chernii, V.Y., Tomachynski, L.A., and Volkov, S.V., “Synthesis and luminescent properties of new zirconium (IV) and hafnium (IV) phthalocyanines with various carbonic acids as out-planed ligands”, Dyes and Pigments, 75: 67-72, (2007). DOI: https://doi.org/10.1016/j.dyepig.2006.05.013
- [8] Haimovici, R., Ciulla, T.A., Miller, J.W., Hasan, T., Flotte, T.J., Kenney, A.G., Schomacker, K.T., and Gragoudas, E.S., “Localization of rose bengal, aluminum phthalocyaninetetrasulfonate, and chlorin e(6) in the rabbit eye”, Retina, 22: 65-74, (2002). DOI: https://doi.org/10.1097/00006982-200202000-00012
- [9] Eldar, M., Yerushalmi, Y., Kessler, E., Scheinowitz, M., Goldbourt, U., Ben-Hur, E., Rosenthal, I., and Battler, A., “Preferential uptake of a water-soluble phthalocyanine by atherosclerotic plaques in rabbits”, Atherosclerosis, 84: 135-139, (1990). DOI: https://doi.org/10.1016/0021-9150(90)90083-u
- [10] Amaral, G.P., Puntel, G.O., Corte, C.L.D., Dobrachinski, F., Barcelos, R.P., Bastos, L.L., Avilla, D.S., Rocha, J.B.T., da Silva, E.O., Puntel, R.L., and Soares, F.A.A., “The antioxidant properties of different phthalocyanines”, Toxicology in Vitro, 26: 125-132, (2012). DOI: https://doi.org/10.1016/j.tiv.2011.10.006
- [11] Uslan, C., and Sesalan, Ş., “Synthesis of novel DNA-interacting phthalocyanines”, Dyes and Pigments, 94: 127-135, (2012). DOI: https://doi.org/10.1016/j.dyepig.2011.12.003
- [12] Nishiyama, N., Jang, W.D., and Kataoka, K., “Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery”, New Journal of Chemistry, 31: 1074-1082, (2007). DOI: https://doi.org/10.1039/B616050F
- [13] Tamaki, Y., “Prospects for nanomedicine in treating age-related macular degeneration”, Nanomedicine, 4: 341-354, (2009). DOI: https://doi.org/10.2217/nnm.09.10
- [14] Mao, J.F., Zhang, Y., Zhu, J., Zhang, C., and Guo, Z., “Molecular combo of photodynamictherapeutic
agent silicon(IV) phthalocyanine and anticancer drug cisplatin”, Chemical Communication, 8: 908-910, (2009). DOI: https://doi.org/10.1039/B817968A
- [15] Yabaş, E., Bağda, E., and Bağda, E., “The water soluble ball-type phthalocyanine as new potential anticancer drugs”, Dyes and Pigments, 120: 220-227, (2015). DOI: https://doi.org/10.1016/j.dyepig.2015.03.038
- [16] Rosenberg, B., Camp, L.V., Trosko, J.E., and Mansour, V.H., “Platinum compounds: a new class of potent antitumour agents”, Nature, 222: 385-386, (1969). DOI: https://doi.org/10.1038/222385a0
- [17] Banerjee, S.M., MacRobert, A.J., Mosse, C.A., Periera, B., Bown, S.G., and Keshtgar, M.R.S., Photodynamic therapy: Inception to application in breast cancer”, Breast, 31: 105-113, (2017). DOI: https://doi.org/105.10.1016/j.breast.2016.09.016
- [18] Bas¸ H., Biyiklioglu, Z., Barut, B., Yalçın, C.Ö., and Ozel, A., “Highly water soluble axial disubstituted silicon(IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines”, Inorganic Chemistry Communication, 156: 111139, (2023). DOI: https://doi.org/10.1016/j.inoche.2023.111139
- [19] Keles, T., Barut, B., Biyiklioglu, Z., and Ozel, A., “A comparative study on DNA / BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn(III), Cu (II) phthalocyanines”, Dyes and Pigments, 139: 575–586, (2017). DOI: https://doi.org/10.1016/j.dyepig.2016.12.045
- [20] Amitha, G.S., and Vasudevan, S., “DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines”, Polyhedron, 190: 114773, (2020). DOI: https://doi.org/10.1016/j.poly.2020.114773
- [21] Güngördü Solğun, D., Horoz, S., and Ağırtaş, M.S., “Synthesis of novel tetra (4-tritylphenoxy) substituted metallophthalocyanines and investigation of their aggregation, photovoltaic, solar cell properties”, Inorganic and Nano-Metal Chemistry, 48(10): 508-514, (2018). DOI: https://doi.org/10.1080/24701556.2019.1572624
- [22] Marmur, J., “A procedure for the isolation of deoxyribonucleic acid from microorganisms”, Journal of Molecular Biology, 3: 208-218, (1961). DOI: https://doi.org/10.1016/S0022-2836(61)80047-8
- [23] Wolfe, A., Shimer, G.H., and Meehan, T., “Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA”, Biochemistry, 26: 6392-6396, (1987). DOI: https://doi.org/10.1021/bi00394a013
- [24] Barut, B., Sofuoglu, A., Biyiklioglu, Z., and Özel, A., “The water soluble peripherally tetra-substituted zinc (II), manganese (III) and copper (II) phthalocyanines as new potential anticancer agents”, Dalton Transactions, 45: 14301-14310, (2016). DOI: https://doi.org/10.1039/C6DT02720B
- [25] Esenpınar, A.A., Durmus, M., and Bulut, M., “Photophysical, photochemical and BSA binding/BQ quenching properties of quaternizable coumarin containing water soluble zinc phthalocyanine complexes”, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 79: 608-617, (2011). DOI: https://doi.org/10.1016/j.saa.2011.03.043
- [26] Sirajuddin, M., Ali, S., and Badshah, A., “Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry”, Journal of Photochemistry Photobiology B Biology, 124: 1-19, (2013). DOI: https://doi.org/10.1016/j.jphotobiol.2013.03.013
- [27] Gonzalez-Ruiz, V., Olives, A.I., Martin, M.A., Ribelles, P., Ramos, M.T., and Menendez, J. C., “An overview of analytical techniques employed to evidence drug–DNA interactions. Applications to the Design of Genosensors”, In Techopen, 65: 3-664, (2011). DOI: https://doi.org/10.5772/13586
- [28] Zipper, H., Brunner, H., Bernhagen, J., and Vitzthum, F., “Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications”, Nucleic Acids Research, 32(12): e103, (2004). DOI: https://doi.org/10.1093/nar/gnh101
- [29] Umemura, K., Nagami, F., Okada, T., and Kuroda, R., “AFM characterization of single strand-specific endonuclease activity on linear DNA”, Nucleic Acids Research, 28: e39, (2000). DOI: https://doi.org/10.1093/nar/28.9.e39
- [30] Mudasir, M., Wahyuni, E.T., Tjahjono, D.H., N., Yoshioka, N., and Inoue, H., “Spectroscopic studies on the thermodynamic and thermal denaturation of the CT-DNA binding of methylene blue”, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 77: 528-534, (2010). DOI: https://doi.org/10.1016/j.saa.2010.06.032
- [31] Norden, B., and Tjerneld, F., “Binding of inert metal complexes to deoxyribonucleic acid detected by linear dichroism”, FEBS Letters, 67(3): 368-370, (1976). DOI: https://doi.org/10.1016/0014-5793(76)80566-2
- [32] Waring, M.J., “Complex formation between ethidium bromide and nucleic acids”, Journal of Molecular Biology, 13: 269-282, (1965). DOI: https://doi.org/10.1016/s0022-2836(65)80096-1
- [33] Neyhart, G.A., Grover, N., Smith, S.R., Kalsbeck, W.A., Fairly, T.A., Cory, M., and Thorp, H.H., “Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV)”, Journal of American Chemical Society, 115: 4423-4428, (1993). DOI: https://doi.org/10.1021/ja00064a001
- [34] Arslantas, A., and Agirtas, M.S., “Investigation of DNA binding activities of peripherally 2,10,16,24-tetrakis dimethyl 5-(phenoxy)-isophthalate-substituted Ni(II) phthalocyanine complex”, Chemistryselect, 3(11): 3155-3160, (2018). DOI: https://doi.org/10.1002/slct.201800572