Research Article
BibTex RIS Cite

Hidrolik otofretaj işleminde kalıntı gerilme oluşumunun incelenmesi

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1593112

Abstract

Bu çalışma, hidrolik-otofretaj işleminde ağır silah namlusu için gerilme dağılımının analitik ve sayısal yöntemlerle kapsamlı bir şekilde incelenmesini içermektedir. Elastik-plastik geçiş yarıçapını ve optimum otofretaj basıncını hesaplamak için analitik denklemler kullanılmıştır. Gerilme dağılımları, yükleme, basınç kaldırma ve çalışma basıncı uygulamasının her aşamasına özgü belirli denklemler ile hesaplanmıştır. Hem analitik hem de sayısal modelde, bilineer-kinematik pekleşme malzeme modeli, düzlem-şekil değişimi hali ve Von Mises akma kriteri kullanılmıştır. Analiz matrisi dört ana parametreden oluşan geniş bir yelpazeyi içermektedir: namlu çapı, namlu malzemesinin akma dayanımı, otofretaj basıncı ve çalışma basıncı. Bu parametrelerin otofretaj işlemi üzerindeki etkileri karşılaştırmalı bir şekilde verilmiştir. Çalışma basıncı altında otofretajlı namlu için Von Mises eşdeğer gerilmesi %36 oranında azalmıştır. Namlu çapı arttıkça, maksimum Von Mises eşdeğer gerilmesi parabolik olarak artmış ve çalışma basıncı uygulandığında konumu namlu iç yarıçapına doğru yönlendirilmiştir. Benzer şekilde, elastik-plastik geçiş yarıçapı artan akma dayanımı ile iç yarıçapa doğru yönlendirilmiştir.

References

  • [1] Bhatnagar, R. M., “Modelling, validation and design of autofrettage and compound cylinder”, European Journal of Mechanics A/Solids, 33(2): 94-100, (2005). DOI: http://dx.doi.org/10.1016/j.euromechsol.2012.09.013
  • [2] Majzoobi, G. H., and Ghomi A., “Optimization of autofrettage in thick-walled cylinders”, Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2): 124-131, (2006).
  • [3] Huang, X. P., “A general autofrettage model of a thick-walled cylinder based on tensile-compressive stress-strain curve of a material”, Journal of Strain Analysis for Engineering Design, 40(20): 599-607, (2005). DOI: https://doi.org/10.1243/030932405X16070
  • [4] Lee, E. Y., Lee, Y. S., Yang, Q. M., Kim, J. H., Cha, K. U., and Hong, S. K., “Autofrettage process analysis of a compound cylinder based on the elastic-perfectly plastic and strain hardening stress-strain curve”, Journal of Mechanical Science and Technology, 23(12): 3153-3160, (2009). DOI: https://doi.org/10.1007/s12206-009-1009-9
  • [5] Ayob, A., Tamin, M. M., and Elbasheer, M. K., “Pressure limits of thick-walled cylinders”, Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, (2009).
  • [6] Shim, W. S., Kim, J. H., Lee, Y. S., Cha K. U., and Hong, S. K., “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”, Experimental Mechanics, 50: 621-626, (2010). DOI: https://doi.org/10.1007/s11340-009-9255-4
  • [7] Babu, D. D., and Balaji, T. J., “Theoretical and finite element analysis of high pressure components”, IOSR Journal of Engineering, 3(2): 25-34, (2013). DOI: https://doi.org/10.9790/3021-03222534
  • [8] Rupali, and Mondal, S. C., “Finite element analysis for predicting residual stresses of autofrettaged spherical vessels considering bauschinger effect”, International Journal of Scientific Engineering and Research (IJSER), 6(8): 912-919, (2015).
  • [9] Jabur, L. S., Radhi, H. I., and Mohsin, N. R., “Finite element analysis of autofrettage process of thick walled cylinders”, International Journal of Mechanical Engineering and Technology, 7(5): 184-192, (2006).
  • [10] Jain, A., Khanwelkar, S., Saurav, S. K., Landge, A., and Yadav, U., “Design and performance of hydraulic autofrettage using universal testing machine”, International Journal of Mechanical Engineering Research and Technology, 6(2): 154-157, (2016).
  • [11] Çandar, H., and Filiz, H., “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”, Universal Journal of Engineering Science, 5(3): 44-55, (2017). DOI: https://doi.org/10.13189/ujes.2017.050302.
  • [12] Huang, W., and Wencheng, T., “The optimum autofrettage and fatigue prediction based on finite-element method for high pressure cylinder”, Proceedings of 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, (2019). DOI: https://doi.org/10.1109/EITCE47263.2019.9095072
  • [13] Repplinger, C., Kedziora, S., Cao, T. B., Maas, S., Sellen, S., and Zürbes, A., “Numerical determination and experimental verification of the optimum autofrettage pressure for a complex aluminum high-pressure valve to foster crack closure”, Fatigue and Fracture of Engineering Materials and Structures, 43: 2183-2199, (2020). DOI: https://doi.org/10.1111/ffe.13227
  • [14] Li, G., Deng, X., Song, H., and Zhang, B., “Research on autofrettage mechanism in ultra-high pressure thick-walled vessel”, Proceedings of the 7th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2020), Busan, South Korea, (2020). https://doi.org/10.1088/1742-6596/1802/2/022001
  • [15] Hu, Z., and Parker, A. P., “Numerical modeling of hydraulic autofrettage numerical modeling of hydraulic autofrettage fracture pumps based on true material model”, International Journal of Mechanical and Production Engineering Research and Development, 10(5): 1-7, (2022).
  • [16] Ayob, A., and Elbasheer, M. K., “Optimum autofrettage pressure in thick cylinders”, Jurnal Mekanikal, 24: 1-14, (2007).
  • [17] Zhu, R., and Yang, J., “Autofrettage of thick cylinders”, International Journal of Pressure Vessels and Piping, 75: 443-446, (1998).
  • [18] Srivastava, A. K., and Gope, P. C., “Strength of Materials”. 2nd ed., PHI Learning Private Limited, New Delhi, (2012).
  • [19] ASM International, “Atlas of Stress-Strain Curves” 2nd ed., Materials Park, United State of America, (2002).
  • [20] Trieb, F., Schedelmaier, J., and Poelzl, M., “Autofrettage - basic information and practical application on components for waterjet cutting”, Proceedings of WJTA American Waterjet Conference, United State of America, Houston, Texas, United State of America, (2005).
  • [21] Troiano, E., Parker, A.P., Underwood, J.H., and Mossey, C., “Experimental data, numerical fit and fatigue life calculations relating to bauschinger effect in high strength armament steels”, Journal of Pressure Vessel Technology, 125(3): 330-334, (2003). DOI: https://10.1115/1.1593072
  • [22] Perry, J., and Aboudi, J., “Elasto-plastic stresses in thick-walled cylinders”, Journal of Pressure Vessel Technology, 125(3): 248-252, (2003). DOI: https://doi.org/10.1115/1.1593078
  • [23] Perry, J., and Perl, M., “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”, Journal of Pressure Vessel Technology, 139(5): 051401, (2017). DOI: https://doi.org/10.1115/1.4037121
  • [24] Hill, R., “The Mathematical Theory of Plasticity”, Oxford University Press, New York, (1950).
  • [25] Perl, M., Perry, J., “The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum pressure”, Journal of Pressure Vessel Technology, 135(2): 021404, (2013). DOI: https://doi.org/10.1115/1.4007645
  • [26] Ali, A.R.M., Ghosh, N.C., and Alam, T.E., “Optimum design of pressure vessel subjected to autofrettage process”, International Journal of Mechanical and Mechatronics Engineering, 4(10): 1040-1045, (2010). DOI: https://doi.org/10.5281/zenodo.1083535

Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1593112

Abstract

This study represents comprehensive investigations of the stress distribution for a heavy-weapon-barrel in hydraulic-autofrettage process by means of analytical and numerical methods. Analytical equations are employed to calculate elastic-plastic junction radius and optimum autofrettage-pressure. Stress distributions are calculated with certain equations specific to each stage of loading, unloading and working-pressure application. In both analytical and numerical model, bilinear-kinematic-hardening material model, plane-strain model, and Von Mises-yield-criteria are used. The investigation matrix includes a wide range of four main parameters: barrel diameter, yield strength of barrel material, autofrettage- pressure and working-pressure. The effects of these parameters on autofrettage process are presented in a comparative manner. There is a 36% reduction of Von Mises stress for autofrettaged barrel under working pressure. With increasing barrel diameter, the maximum Von Mises stress parabolically increases and its location moves to the barrel inner radius when working pressure is applied. Radius of elastic-plastic junction is directed towards the inner radius with increasing yield strength.

References

  • [1] Bhatnagar, R. M., “Modelling, validation and design of autofrettage and compound cylinder”, European Journal of Mechanics A/Solids, 33(2): 94-100, (2005). DOI: http://dx.doi.org/10.1016/j.euromechsol.2012.09.013
  • [2] Majzoobi, G. H., and Ghomi A., “Optimization of autofrettage in thick-walled cylinders”, Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2): 124-131, (2006).
  • [3] Huang, X. P., “A general autofrettage model of a thick-walled cylinder based on tensile-compressive stress-strain curve of a material”, Journal of Strain Analysis for Engineering Design, 40(20): 599-607, (2005). DOI: https://doi.org/10.1243/030932405X16070
  • [4] Lee, E. Y., Lee, Y. S., Yang, Q. M., Kim, J. H., Cha, K. U., and Hong, S. K., “Autofrettage process analysis of a compound cylinder based on the elastic-perfectly plastic and strain hardening stress-strain curve”, Journal of Mechanical Science and Technology, 23(12): 3153-3160, (2009). DOI: https://doi.org/10.1007/s12206-009-1009-9
  • [5] Ayob, A., Tamin, M. M., and Elbasheer, M. K., “Pressure limits of thick-walled cylinders”, Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, (2009).
  • [6] Shim, W. S., Kim, J. H., Lee, Y. S., Cha K. U., and Hong, S. K., “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”, Experimental Mechanics, 50: 621-626, (2010). DOI: https://doi.org/10.1007/s11340-009-9255-4
  • [7] Babu, D. D., and Balaji, T. J., “Theoretical and finite element analysis of high pressure components”, IOSR Journal of Engineering, 3(2): 25-34, (2013). DOI: https://doi.org/10.9790/3021-03222534
  • [8] Rupali, and Mondal, S. C., “Finite element analysis for predicting residual stresses of autofrettaged spherical vessels considering bauschinger effect”, International Journal of Scientific Engineering and Research (IJSER), 6(8): 912-919, (2015).
  • [9] Jabur, L. S., Radhi, H. I., and Mohsin, N. R., “Finite element analysis of autofrettage process of thick walled cylinders”, International Journal of Mechanical Engineering and Technology, 7(5): 184-192, (2006).
  • [10] Jain, A., Khanwelkar, S., Saurav, S. K., Landge, A., and Yadav, U., “Design and performance of hydraulic autofrettage using universal testing machine”, International Journal of Mechanical Engineering Research and Technology, 6(2): 154-157, (2016).
  • [11] Çandar, H., and Filiz, H., “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”, Universal Journal of Engineering Science, 5(3): 44-55, (2017). DOI: https://doi.org/10.13189/ujes.2017.050302.
  • [12] Huang, W., and Wencheng, T., “The optimum autofrettage and fatigue prediction based on finite-element method for high pressure cylinder”, Proceedings of 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, (2019). DOI: https://doi.org/10.1109/EITCE47263.2019.9095072
  • [13] Repplinger, C., Kedziora, S., Cao, T. B., Maas, S., Sellen, S., and Zürbes, A., “Numerical determination and experimental verification of the optimum autofrettage pressure for a complex aluminum high-pressure valve to foster crack closure”, Fatigue and Fracture of Engineering Materials and Structures, 43: 2183-2199, (2020). DOI: https://doi.org/10.1111/ffe.13227
  • [14] Li, G., Deng, X., Song, H., and Zhang, B., “Research on autofrettage mechanism in ultra-high pressure thick-walled vessel”, Proceedings of the 7th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2020), Busan, South Korea, (2020). https://doi.org/10.1088/1742-6596/1802/2/022001
  • [15] Hu, Z., and Parker, A. P., “Numerical modeling of hydraulic autofrettage numerical modeling of hydraulic autofrettage fracture pumps based on true material model”, International Journal of Mechanical and Production Engineering Research and Development, 10(5): 1-7, (2022).
  • [16] Ayob, A., and Elbasheer, M. K., “Optimum autofrettage pressure in thick cylinders”, Jurnal Mekanikal, 24: 1-14, (2007).
  • [17] Zhu, R., and Yang, J., “Autofrettage of thick cylinders”, International Journal of Pressure Vessels and Piping, 75: 443-446, (1998).
  • [18] Srivastava, A. K., and Gope, P. C., “Strength of Materials”. 2nd ed., PHI Learning Private Limited, New Delhi, (2012).
  • [19] ASM International, “Atlas of Stress-Strain Curves” 2nd ed., Materials Park, United State of America, (2002).
  • [20] Trieb, F., Schedelmaier, J., and Poelzl, M., “Autofrettage - basic information and practical application on components for waterjet cutting”, Proceedings of WJTA American Waterjet Conference, United State of America, Houston, Texas, United State of America, (2005).
  • [21] Troiano, E., Parker, A.P., Underwood, J.H., and Mossey, C., “Experimental data, numerical fit and fatigue life calculations relating to bauschinger effect in high strength armament steels”, Journal of Pressure Vessel Technology, 125(3): 330-334, (2003). DOI: https://10.1115/1.1593072
  • [22] Perry, J., and Aboudi, J., “Elasto-plastic stresses in thick-walled cylinders”, Journal of Pressure Vessel Technology, 125(3): 248-252, (2003). DOI: https://doi.org/10.1115/1.1593078
  • [23] Perry, J., and Perl, M., “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”, Journal of Pressure Vessel Technology, 139(5): 051401, (2017). DOI: https://doi.org/10.1115/1.4037121
  • [24] Hill, R., “The Mathematical Theory of Plasticity”, Oxford University Press, New York, (1950).
  • [25] Perl, M., Perry, J., “The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum pressure”, Journal of Pressure Vessel Technology, 135(2): 021404, (2013). DOI: https://doi.org/10.1115/1.4007645
  • [26] Ali, A.R.M., Ghosh, N.C., and Alam, T.E., “Optimum design of pressure vessel subjected to autofrettage process”, International Journal of Mechanical and Mechatronics Engineering, 4(10): 1040-1045, (2010). DOI: https://doi.org/10.5281/zenodo.1083535
There are 26 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Doğan Baran 0000-0002-6719-9021

Osman Bican 0000-0003-2246-0780

Yahya Doğu 0000-0003-0474-2899

Early Pub Date October 17, 2025
Publication Date November 7, 2025
Submission Date November 28, 2024
Acceptance Date August 11, 2025
Published in Issue Year 2025 Early View

Cite

APA Baran, D., Bican, O., & Doğu, Y. (2025). Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1593112
AMA Baran D, Bican O, Doğu Y. Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process. Gazi University Journal of Science. Published online October 1, 2025:1-1. doi:10.35378/gujs.1593112
Chicago Baran, Doğan, Osman Bican, and Yahya Doğu. “Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process”. Gazi University Journal of Science, October (October 2025), 1-1. https://doi.org/10.35378/gujs.1593112.
EndNote Baran D, Bican O, Doğu Y (October 1, 2025) Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process. Gazi University Journal of Science 1–1.
IEEE D. Baran, O. Bican, and Y. Doğu, “Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process”, Gazi University Journal of Science, pp. 1–1, October2025, doi: 10.35378/gujs.1593112.
ISNAD Baran, Doğan et al. “Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process”. Gazi University Journal of Science. October2025. 1-1. https://doi.org/10.35378/gujs.1593112.
JAMA Baran D, Bican O, Doğu Y. Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process. Gazi University Journal of Science. 2025;:1–1.
MLA Baran, Doğan et al. “Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1593112.
Vancouver Baran D, Bican O, Doğu Y. Analytical and Numerical Investigation of Stress Distribution in Hydraulic Autofrettage Process. Gazi University Journal of Science. 2025:1-.