Modernization of a Low-Energy Ion Accelerator: Control System for Ion Source, Van de Graaff Generator, and Scattering Chamber
Year 2025,
Early View, 1 - 1
Recep Bıyık
,
Osman Alaçayır
,
Tamer Yalçın
Abstract
This study presents the modernization efforts for a low-energy ion accelerator (Sames J-15), originally constructed using 1970s technology, to adapt it for contemporary experimental requirements. As part of this upgrade, a new fiber-optic-based control system was developed to manage the ion source parameters, enabling precise and reliable control of critical operational values. To meet the accelerator’s high-voltage requirements, a toroidal dome-shaped Van de Graaff-type generator was designed and constructed, with a target performance of up to 800 kV and 200 µA. In parallel, a scattering chamber and a target system were designed and integrated into the accelerator to facilitate studies in low-energy proton-induced reactions of light nuclei, including applications in nuclear astrophysics. As a result, a previously outdated ion accelerator was reconfigured and made operational for modern nuclear physics experiments. The systems developed within this project are also considered suitable for implementation in other similarly aged accelerator facilities.
Supporting Institution
This study was supported by TENMAK with project code A2.H4.P6
References
-
[1] Lorusso, A., Velardi, L., Nassisi, V., Paladini, F., Visco, A.M., Campo, N., Torrisi, L., Margarone, D., Giuffrida, L., and Raino, A., “Polymer processing by a low energy ion accelerator”, Nuclear Instruments and Methods in Physics Research B, 266 (10): 2490–2493, (2008). DOI: https://doi.org/10.1016/j.nimb.2008.03.031.
-
[2] Długosz-Lisiecka, M., Biegała, M. and T. Jakubowska, “Activation of medical accelerator components and radioactive waste classification based on low beam energy model Clinac 2300”, Radiation Physics and Chemistry, 205: 1-8, (2023). DOI: https://doi.org/10.1016/j.radphyschem.2022.110730.
-
[3] Langanke, K., Feldmeier, H., Martínez-Pinedo, G., and Neff, T., “Astrophysically important nuclear reactions”, Nuclear Physics A, 1037:1-12, (2007). DOI: https://doi.org/10.1016/j.ppnp.2006.12.010.
-
[4] Mondelaers, W., “Applications of low-energy accelerators”, CERN Yellow Reports:Monographs, Chapter II., 14: 1757-1794, (2024). DOI: https://doi.org/10.23730/CYRSP-2024.
-
[5] Ynsa, M. D., Ramos, M. A., Skukan, N., Torres-Costa, V., and Jakšić, M., “Highly-focused boron implantation in diamond and imaging using the nuclear reaction 11B(p, α)8Be”, Nuclear Instruments and Methods in Physics Research B, 348: 174–177, (2015). DOI: https://doi.org/10.1016/j.nimb.2014.11.036.
-
[6] Veselov, D. S., Voronov, Y. A., and Metel, Y. V., “Simulation of low energy ion implantation in silicon”, Materials Science and Engineering, 498:1-6, (2019). DOI: https://doi.org/10.1088/1757-899X/498/1/012035.
-
[7] McCamey, D. R., Francis, M., McCallum, J. C., Hamilton, A. R., Greentree, A. D., and Clark, R. G., “Donor activation and damage in Si-SiO2 from low-dose, low-energy ion implantation studied via electrical transport in MOSFETs”, Semiconductor Science Technology, 20(5): 363–368, (2005). DOI: https://doi.org/10.1088/0268-1242/20/5/007.
-
[8] Johnson, J. C., McCallum, L., Willems, H., Beveren, V., and Gauja, E., “Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport”, Thin Solid Films, 518(9): 2524–2527, (2010). DOI: https://doi.org/10.1016/j.tsf.2009.09.152.
-
[9] Ludwig, E. J., Black, T. C., Brune, C. R., Geist, W. H., and Karwowski, H. J., “A target chamber for the study of low-energy reactions”, Nuclear Instruments and Methods in Physics Research A, 388: 37-41, (1997). DOI: https://doi.org/10.1016/S0168-9002(97)00021-1
-
[10] Asgari, L., Sadeghi, H., and Khalili, H., “The astrophysical S factor of p+9Be radiative capture reaction in a potential model”, New Astronomy, 108: 1-5, (2024). DOI: https://doi.org/10.1016/j.newast.2023.102178.
-
[11] Csedreki, L., Gyürky, G., and Szücs, T., “Precise resonance parameter measurement in the 12C(p, γ)13N astrophysically important reaction”, Nuclear Physics A, 1037: 1-12, (2023). DOI: https://doi.org/10.1016/j.nuclphysa.2023.122705.
-
[12] Bruno, C. G., “Experimental challenges in low-energy nuclear astrophysics,” Journal of Physics: Conference Series, Institute of Physics Publishing, 1078: 1-8, (2018). DOI: https://doi.org/10.1088/1742-6596/1078/1/012007.
-
[13] Kabir, A., and Nabi, J. U., “Re-examination of astrophysical S-factor of proton capture 9Be(p,γ)10B in stellar matter”, Nuclear Physics A, 1007: 1-10, (2021). DOI: https://doi.org/10.1016/j.nuclphysa.2020.122118.
-
[14] Doupé, J. P., Litherland, A. E., Tomski, I., and Zhao, X. L., “Isobar separation at low energy in accelerator mass spectrometry”, Nuclear Instruments and Methods in Physics Research B, 223-224: 323-327, (2004). DOI: https://doi.org/10.1016/j.nimb.2004.04.064.
-
[15] Chamizo, E., García-León, M., Synal, H. A., Suter, M., and Wacker, L., “Determination of the 240Pu/239Pu atomic ratio in soils from Palomares (Spain) by low-energy accelerator mass spectrometry”, Nuclear Instruments and Methods in Physics Research B, 249: 768–771, (2006). DOI: https://doi.org/10.1016/j.nimb.2006.03.136.
-
[16] Mondelaers, W., “Low-energy electron accelerators in industry and applied research”, Nuclear Instruments and Methods in Physics Research B, 139: 43-50, (1998). DOI: https://doi.org/10.1016/S0168-583X(97)00944-0
-
[17] Gupta, D., Aggarwal, S., Sharma, A., Kumar, S., and Chopra, S., “200 kV Ion Accelerator facility at Kurukshetra University, India”, Material Letters, 308: 1-4, (2022). DOI: https://doi.org/10.1016/j.matlet.2021.131294.
-
[18] Redondo-Cubero, A., Borge, M.J.G., Gordillo, N., Gutierrez, P.C., Olivares, J., Perez Casero, R., and Ynsa, M.D., “Current status and future developments of the ion beam facility at the Centre of Micro-Analysis of Materials in Madrid”, The European Physical Journal Plus, 136: 1-13, (2021). DOI: https://doi.org/10.1140/epjp/s13360-021-01085-9.
-
[19] Reza, G., Andrade, E., Acosta, L., Gongora, B., Huerta, A., Martin Lambarri, D.J., Mas-Ruiz, J., Ortiz, M.E., Padilla, S., Solis, C. and Chaves, E., “Characterization of the new hybrid low-energy accelerator facility in Mexico”, The European Physical Journal Plus, 134: 1-10, (2019). DOI: https://doi.org/10.1140/epjp/i2019-12950-1.
-
[20] Rajta, I., Vajda, I., Gyürky, Gy., Csedreki, L., Kiss, A.Z., Biri, S., van Oosterhout, H.A.P., Podaru, N.C., Mous, D.J.W, “Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 880: 125–130, (2018). DOI: https://doi.org/10.1016/j.nima.2017.10.073.
-
[21] Roumié, M., Nsouli, B., Zahraman, K., and Reslan, A., “First accelerator based ion beam analysis facility in Lebanon: Development and applications”, Nuclear Instruments and Methods in Physics Research, Section B, 219-220:389–393, (2004). DOI: https://doi.org/10.1016/j.nimb.2004.01.088.
-
[22] Karadeniz, H., “Design, Construction and Results of A Low Energy DC Ion Accelerator”, Uludağ University Journal of The Faculty of Engineering, 23(1): 345–352, (2018). DOI: https://doi.org/10.17482/uumfd.338184.
-
[23] Adnan, B., Gökçe, T. Atilla, I.R., and Nizamettin, E. M. “Measurements of Ground, First Excited-State Energy and Width of 5He via d-7Li Reaction”, The Second Eurasian Conference on Nuclear Science and Its Application, Kazakhstan, 367-372, (2003).
-
[24] Alaçayir, O., Baydoğan, N., Baykal, A., and Biyik, R., “Measurement of S-Factor For The 11B(p, α)2α Reaction at Low Energies: Carbon Build-Up Effect”, Turkish Jornal of Nuclear Science, 34(1): 1-15, (2022). [Online]. Available: http://dergipark.gov.tr/tjins
-
[25] Baysoy, D.Y., Reyhancan, İ., and Subaşı, M., “Absolute Yıeld Determınatıon Of A 14 - Mev Neutron”, Journal of Engineering and Natural Sciences, 39:1–10, (2011). Available: https://sigma.yildiz.edu.tr/storage/upload/pdfs/1636094342-tr.pdf
-
[26] Tarcan, G., Subaşı, M., Özbir, Y., and Baykal, A., “Installation and Operation of the Sames J-15 Low Energy Ion Accelerator At Çekmece Nuclear Research and Training Centre”, Mayıs, İstanbul, 1998. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/003/36003502.pdf
-
[27] https://www.pfeiffer-vacuum.com/global/en/products/vacuum-chambers-components/vacuum-feedthroughs”, Current feedthroughs. Accessed Jun 24,2025
-
[28] Burrill, E.A., “Van de Graaff, the Man and his Accelerators”, Physics Today, 20(2): 49–52, (1967). DOI: https://doi.org/10.1063/1.3034150.
-
[29] Trump, J. G., Merrill, F. H., and Safford, F. J., “Van de Graaff generator for general laboratory use,” Review of Scientific Instruments, 9(12): 398–403, (1938). DOI: https://doi.org/10.1063/1.1752376.
-
[30] Verbruggen, R., and Mcmurray, W. R. “A 90 cm Scattering Chamber with Novel Design Features”, Nuclear Instruments And Methods, 104(1):197-203, (1972). DOI: https://doi.org/10.1016/0029-554X(72)90317-5
-
[31] Gunn, G.D., Schmick, T. A., Wright, L., and Fox, J. D., “A Large General Purpose Scattering Chamber”, Nuclear Instruments and Methods, 113: 1–3, 1973. DOI: https://doi.org/10.1016/0029-554X(73)90471-0
-
[32] Yalçın, T., Kam, E., Alaçayır, O., and Bıyık, R., “Measurement of the first Townsend coefficients in dry air”, Radiation Physics and Chemistry, 222: 1-6, (2024). DOI: https://doi.org/10.1016/j.radphyschem.2024.111876.
-
[33] Hinterberger, F., “Electrostatic accelerators”, CAS-CERN Accelerator School: small accelerators, 95-112, (2006). DOI: https://doi.org/10.5170/CERN-2006-012.95
-
[34] https://neutrons.ornl.gov/sns, “OAK Ridge National Lab.,” Accessed: Jun. 24, 2025
-
[35] Feuchtwanger, J., Etxebarria, V., Portilla, J., Jugo, J., Arredondo, I., Badillo, I., Asu, E., Vallis, N., Elorza, M., Alberdi, B., Enperantza, R., Ariz, I., Munoz, I., Etxebeste, U., and Hernandez, I., “New Generation Compact Linear Accelerator for Low-Current, Low-Energy Multiple Applications”, Applied Sciences (Switzerland), 12(9): 1-11, (2022). DOI: https://doi.org/10.3390/app12094118.
-
[36] Alaçayır, O., “Investigation of Resonance Levels and Decay Kinematics of 12C Compound Nuclei Formed by p+11B Reaction Channel Using Multichannel R-Matrix Analysis Method”, Doctorate thesis, Yıldız Technical University, Institute of Science, İstanbul, 19-25, (2024).
Year 2025,
Early View, 1 - 1
Recep Bıyık
,
Osman Alaçayır
,
Tamer Yalçın
References
-
[1] Lorusso, A., Velardi, L., Nassisi, V., Paladini, F., Visco, A.M., Campo, N., Torrisi, L., Margarone, D., Giuffrida, L., and Raino, A., “Polymer processing by a low energy ion accelerator”, Nuclear Instruments and Methods in Physics Research B, 266 (10): 2490–2493, (2008). DOI: https://doi.org/10.1016/j.nimb.2008.03.031.
-
[2] Długosz-Lisiecka, M., Biegała, M. and T. Jakubowska, “Activation of medical accelerator components and radioactive waste classification based on low beam energy model Clinac 2300”, Radiation Physics and Chemistry, 205: 1-8, (2023). DOI: https://doi.org/10.1016/j.radphyschem.2022.110730.
-
[3] Langanke, K., Feldmeier, H., Martínez-Pinedo, G., and Neff, T., “Astrophysically important nuclear reactions”, Nuclear Physics A, 1037:1-12, (2007). DOI: https://doi.org/10.1016/j.ppnp.2006.12.010.
-
[4] Mondelaers, W., “Applications of low-energy accelerators”, CERN Yellow Reports:Monographs, Chapter II., 14: 1757-1794, (2024). DOI: https://doi.org/10.23730/CYRSP-2024.
-
[5] Ynsa, M. D., Ramos, M. A., Skukan, N., Torres-Costa, V., and Jakšić, M., “Highly-focused boron implantation in diamond and imaging using the nuclear reaction 11B(p, α)8Be”, Nuclear Instruments and Methods in Physics Research B, 348: 174–177, (2015). DOI: https://doi.org/10.1016/j.nimb.2014.11.036.
-
[6] Veselov, D. S., Voronov, Y. A., and Metel, Y. V., “Simulation of low energy ion implantation in silicon”, Materials Science and Engineering, 498:1-6, (2019). DOI: https://doi.org/10.1088/1757-899X/498/1/012035.
-
[7] McCamey, D. R., Francis, M., McCallum, J. C., Hamilton, A. R., Greentree, A. D., and Clark, R. G., “Donor activation and damage in Si-SiO2 from low-dose, low-energy ion implantation studied via electrical transport in MOSFETs”, Semiconductor Science Technology, 20(5): 363–368, (2005). DOI: https://doi.org/10.1088/0268-1242/20/5/007.
-
[8] Johnson, J. C., McCallum, L., Willems, H., Beveren, V., and Gauja, E., “Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport”, Thin Solid Films, 518(9): 2524–2527, (2010). DOI: https://doi.org/10.1016/j.tsf.2009.09.152.
-
[9] Ludwig, E. J., Black, T. C., Brune, C. R., Geist, W. H., and Karwowski, H. J., “A target chamber for the study of low-energy reactions”, Nuclear Instruments and Methods in Physics Research A, 388: 37-41, (1997). DOI: https://doi.org/10.1016/S0168-9002(97)00021-1
-
[10] Asgari, L., Sadeghi, H., and Khalili, H., “The astrophysical S factor of p+9Be radiative capture reaction in a potential model”, New Astronomy, 108: 1-5, (2024). DOI: https://doi.org/10.1016/j.newast.2023.102178.
-
[11] Csedreki, L., Gyürky, G., and Szücs, T., “Precise resonance parameter measurement in the 12C(p, γ)13N astrophysically important reaction”, Nuclear Physics A, 1037: 1-12, (2023). DOI: https://doi.org/10.1016/j.nuclphysa.2023.122705.
-
[12] Bruno, C. G., “Experimental challenges in low-energy nuclear astrophysics,” Journal of Physics: Conference Series, Institute of Physics Publishing, 1078: 1-8, (2018). DOI: https://doi.org/10.1088/1742-6596/1078/1/012007.
-
[13] Kabir, A., and Nabi, J. U., “Re-examination of astrophysical S-factor of proton capture 9Be(p,γ)10B in stellar matter”, Nuclear Physics A, 1007: 1-10, (2021). DOI: https://doi.org/10.1016/j.nuclphysa.2020.122118.
-
[14] Doupé, J. P., Litherland, A. E., Tomski, I., and Zhao, X. L., “Isobar separation at low energy in accelerator mass spectrometry”, Nuclear Instruments and Methods in Physics Research B, 223-224: 323-327, (2004). DOI: https://doi.org/10.1016/j.nimb.2004.04.064.
-
[15] Chamizo, E., García-León, M., Synal, H. A., Suter, M., and Wacker, L., “Determination of the 240Pu/239Pu atomic ratio in soils from Palomares (Spain) by low-energy accelerator mass spectrometry”, Nuclear Instruments and Methods in Physics Research B, 249: 768–771, (2006). DOI: https://doi.org/10.1016/j.nimb.2006.03.136.
-
[16] Mondelaers, W., “Low-energy electron accelerators in industry and applied research”, Nuclear Instruments and Methods in Physics Research B, 139: 43-50, (1998). DOI: https://doi.org/10.1016/S0168-583X(97)00944-0
-
[17] Gupta, D., Aggarwal, S., Sharma, A., Kumar, S., and Chopra, S., “200 kV Ion Accelerator facility at Kurukshetra University, India”, Material Letters, 308: 1-4, (2022). DOI: https://doi.org/10.1016/j.matlet.2021.131294.
-
[18] Redondo-Cubero, A., Borge, M.J.G., Gordillo, N., Gutierrez, P.C., Olivares, J., Perez Casero, R., and Ynsa, M.D., “Current status and future developments of the ion beam facility at the Centre of Micro-Analysis of Materials in Madrid”, The European Physical Journal Plus, 136: 1-13, (2021). DOI: https://doi.org/10.1140/epjp/s13360-021-01085-9.
-
[19] Reza, G., Andrade, E., Acosta, L., Gongora, B., Huerta, A., Martin Lambarri, D.J., Mas-Ruiz, J., Ortiz, M.E., Padilla, S., Solis, C. and Chaves, E., “Characterization of the new hybrid low-energy accelerator facility in Mexico”, The European Physical Journal Plus, 134: 1-10, (2019). DOI: https://doi.org/10.1140/epjp/i2019-12950-1.
-
[20] Rajta, I., Vajda, I., Gyürky, Gy., Csedreki, L., Kiss, A.Z., Biri, S., van Oosterhout, H.A.P., Podaru, N.C., Mous, D.J.W, “Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 880: 125–130, (2018). DOI: https://doi.org/10.1016/j.nima.2017.10.073.
-
[21] Roumié, M., Nsouli, B., Zahraman, K., and Reslan, A., “First accelerator based ion beam analysis facility in Lebanon: Development and applications”, Nuclear Instruments and Methods in Physics Research, Section B, 219-220:389–393, (2004). DOI: https://doi.org/10.1016/j.nimb.2004.01.088.
-
[22] Karadeniz, H., “Design, Construction and Results of A Low Energy DC Ion Accelerator”, Uludağ University Journal of The Faculty of Engineering, 23(1): 345–352, (2018). DOI: https://doi.org/10.17482/uumfd.338184.
-
[23] Adnan, B., Gökçe, T. Atilla, I.R., and Nizamettin, E. M. “Measurements of Ground, First Excited-State Energy and Width of 5He via d-7Li Reaction”, The Second Eurasian Conference on Nuclear Science and Its Application, Kazakhstan, 367-372, (2003).
-
[24] Alaçayir, O., Baydoğan, N., Baykal, A., and Biyik, R., “Measurement of S-Factor For The 11B(p, α)2α Reaction at Low Energies: Carbon Build-Up Effect”, Turkish Jornal of Nuclear Science, 34(1): 1-15, (2022). [Online]. Available: http://dergipark.gov.tr/tjins
-
[25] Baysoy, D.Y., Reyhancan, İ., and Subaşı, M., “Absolute Yıeld Determınatıon Of A 14 - Mev Neutron”, Journal of Engineering and Natural Sciences, 39:1–10, (2011). Available: https://sigma.yildiz.edu.tr/storage/upload/pdfs/1636094342-tr.pdf
-
[26] Tarcan, G., Subaşı, M., Özbir, Y., and Baykal, A., “Installation and Operation of the Sames J-15 Low Energy Ion Accelerator At Çekmece Nuclear Research and Training Centre”, Mayıs, İstanbul, 1998. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/003/36003502.pdf
-
[27] https://www.pfeiffer-vacuum.com/global/en/products/vacuum-chambers-components/vacuum-feedthroughs”, Current feedthroughs. Accessed Jun 24,2025
-
[28] Burrill, E.A., “Van de Graaff, the Man and his Accelerators”, Physics Today, 20(2): 49–52, (1967). DOI: https://doi.org/10.1063/1.3034150.
-
[29] Trump, J. G., Merrill, F. H., and Safford, F. J., “Van de Graaff generator for general laboratory use,” Review of Scientific Instruments, 9(12): 398–403, (1938). DOI: https://doi.org/10.1063/1.1752376.
-
[30] Verbruggen, R., and Mcmurray, W. R. “A 90 cm Scattering Chamber with Novel Design Features”, Nuclear Instruments And Methods, 104(1):197-203, (1972). DOI: https://doi.org/10.1016/0029-554X(72)90317-5
-
[31] Gunn, G.D., Schmick, T. A., Wright, L., and Fox, J. D., “A Large General Purpose Scattering Chamber”, Nuclear Instruments and Methods, 113: 1–3, 1973. DOI: https://doi.org/10.1016/0029-554X(73)90471-0
-
[32] Yalçın, T., Kam, E., Alaçayır, O., and Bıyık, R., “Measurement of the first Townsend coefficients in dry air”, Radiation Physics and Chemistry, 222: 1-6, (2024). DOI: https://doi.org/10.1016/j.radphyschem.2024.111876.
-
[33] Hinterberger, F., “Electrostatic accelerators”, CAS-CERN Accelerator School: small accelerators, 95-112, (2006). DOI: https://doi.org/10.5170/CERN-2006-012.95
-
[34] https://neutrons.ornl.gov/sns, “OAK Ridge National Lab.,” Accessed: Jun. 24, 2025
-
[35] Feuchtwanger, J., Etxebarria, V., Portilla, J., Jugo, J., Arredondo, I., Badillo, I., Asu, E., Vallis, N., Elorza, M., Alberdi, B., Enperantza, R., Ariz, I., Munoz, I., Etxebeste, U., and Hernandez, I., “New Generation Compact Linear Accelerator for Low-Current, Low-Energy Multiple Applications”, Applied Sciences (Switzerland), 12(9): 1-11, (2022). DOI: https://doi.org/10.3390/app12094118.
-
[36] Alaçayır, O., “Investigation of Resonance Levels and Decay Kinematics of 12C Compound Nuclei Formed by p+11B Reaction Channel Using Multichannel R-Matrix Analysis Method”, Doctorate thesis, Yıldız Technical University, Institute of Science, İstanbul, 19-25, (2024).