Research Article
BibTex RIS Cite

Year 2025, Early View, 1 - 1

Abstract

Project Number

FYL-2023-3263

References

  • [1] Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmølle, M., Stewart, P. S., & Bjarnsholt, T., “The biofilm life cycle: expanding the conceptual model of biofilm formation,” Nature Reviews Microbiology, 20(10): 608-620, (2022). DOI: https://doi.org/10.1038/s41579-022-00767-0
  • [2] Rather, M. A., Gupta, K., & Mandal, M., “Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies,” Brazilian Journal of Microbiology, 52(12): 1-18, (2021). DOI: https://doi.org/10.1007/s42770-021-00624-x
  • [3] Sanchez, C. J., Mende, K., Beckius, M. L., Akers, K. S., Romano, D. R., Wenke, J. C., & Murray, C. K., “Biofilm formation by clinical isolates and the implications in chronic infections,” BMC Infectious Diseases, 13: 1-12, (2013). DOI: https://doi.org/10.1186/1471-2334-13-47
  • [4] Saising, J., Dube, L., Ziebandt, A. K., Voravuthikunchai, S. P., Nega, M., & Götz, F., “Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms,” Antimicrobial Agents and Chemotherapy, 56(11): 5804-5810, (2012). DOI: https://doi.org/10.1128/aac.01296-12
  • [5] Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., & Costerton, J. W., “Biofilm formation in Staphylococcus implant infections: A review of molecular mechanisms and implications for biofilm-resistant materials,” Biomaterials, 33(26): 5967-5982, (2012). DOI: https://doi.org/10.1016/j.biomaterials.2012.05.031
  • [6] World Health Organization (WHO). (2017). https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Access date: 09.01.2025.
  • [7] Kırmusaoğlu, S., ‘’The comparison of methods used for the detection of biofilm formation that cause antibiotic resistance of Staphylococcus epidermidis and Staphylococcus aureus,’’ Ortadoğu Tıp Dergisi, 9(1): 28-33, (2017). DOI: https://doi.org/10.21601/ortadogutipdergisi.299940
  • [8] Roy, R., Tiwari, M., Donelli, G., & Tiwari, V., ‘’Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action,’’ Virulence, 9(1): 522-554, (2018). DOI: https://doi.org/10.1080/21505594.2017.1313372
  • [9] George, T., Sivam, V., Vaiyapuri, M., Anandan, R., Sivaraman, G. K., & Joseph, T. C., ‘’Standardizing biofilm quantification: harmonizing crystal violet absorbance measurements through extinction coefficient ratio adjustment,’’ Archives of Microbiology, 207(3): 1-7, (2025). DOI: https://doi.org/10.1007/s00203-025-04251-0
  • [10] Manhas, P. L., Jadli, M., Sharma, R., Manhas, H., & Omar, B. J., ‘’A novel dual-staining method for cost-effective visualization and differentiation of microbial biofilms,’’ Scientific Reports, 14(1): 29169, (2024). DOI: https://doi.org/10.1038/s41598-024-80644-3
  • [11] Nirmala, B., & Omar, B. J., ‘’Microbial Biofilm Detection and Differentiation by Dual Staining Using Maneval’s Stain,’’ Bio-protocol, 15(5): e5228, (2025). DOI: https://doi.org/10.1038/s41598-024-80644-3
  • [12] Canlı, K., Yetgin, A., Benek, A., Bozyel, M. E., & Altuner, E. A., ‘’In vitro antimicrobial activity screening of ethanol extract of Lavandula stoechas and investigation of its biochemical composition,’’ Advances in Pharmacological and Pharmaceutical Sciences, 2019: 1-6, (2019). DOI: https://doi.org/10.1155/2019/3201458
  • [13] Xiong, Z., Tian, X., Wang, G., Song, X., Xia, Y., Zhang, H., & Ai, L., ‘’Development of a high-throughput screening method for exopolysaccharide-producing Streptococcus thermophilus based on Congo red,’’ Food Research International, 162: 112094, (2022). DOI: https://doi.org/10.1016/j.foodres.2022.112094
  • [14] Sultan, A. M., & Nabiel, Y., ‘’Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better?,’’ African Journal of Clinical and Experimental Microbiology, 20(1): 60-66, (2019). DOI: https://doi.org/10.4314/ajcem.v20i1.9
  • [15] Lee, J. S., Bae, Y. M., Han, A., & Lee, S. Y., ‘’Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp.,’’ LWT, 73: 707-714, (2016). DOI: https://doi.org/10.1016/j.lwt.2016.03.023
  • [16] Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F., ‘’Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci,’’ Apmis, 115(8): 891-899, (2007). DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • [17] Tunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M. E., Canli, K., & Altuner, E. M., ‘’Biological activities and biochemical composition of endemic Achillea fraasii,’’ Microorganisms, 11(4): 978, (2023). DOI: https://doi.org/10.3390/microorganisms11040978
  • [18] Ozturk, I., Yurtman, A. N., Erac, B., Gul-Yurtsever, S., Ermertcan, S., & Hosgor-Limoncu, M., ‘’In vitro effect of moxifloxacin and rifampicin on biofilm formation by clinical MRSA isolates,’’ Bratislavske lekarske listy, 115(8): 483-486, (2014). DOI: https://doi.org/10.4149/bll_2014_093
  • [19] Kajiura, T., Wada, H., Ito, K., Anzai, Y., & Kato, F., ‘’Conjugative plasmid transfer in the biofilm formed by Enterococcus faecalis,’’ Journal of Health Science, 52(4): 358-367, (2006). DOI: https://doi.org/10.1248/jhs.52.358
  • [20] Jin, H., Zhou, R., Kang, M., Luo, R., Cai, X., & Chen, H., ‘’Biofilm formation by field isolates and reference strains of Haemophilus parasuis,’’ Veterinary Microbiology, 118(1-2): 117-123, (2006). DOI: https://doi.org/10.1016/j.vetmic.2006.07.009
  • [21] Katongole, P., Nalubega, F., Florence, N. C., Asiimwe, B., & Andia, I., ‘’Biofilm formation, antimicrobial susceptibility and virulence genes of uropathogenic Escherichia coli isolated from clinical isolates in Uganda,’’ BMC Infectious Diseases, 20: 1-6, (2020). DOI: https://doi.org/10.1186/s12879-020-05186-1
  • [22] Sivaranjani, M., McCarthy, M. C., Sniatynski, M. K., Wu, L., Dillon, J. A. R., Rubin, J. E., & White, A. P., ‘’Biofilm formation and antimicrobial susceptibility of E. coli associated with colibacillosis outbreaks in broiler chickens from Saskatchewan,’’ Frontiers in Microbiology, 13: 841516, (2022). DOI: https://doi.org/10.3389/fmicb.2022.841516
  • [23] Recouvreux, D. O., Carminatti, C. A., Pitlovanciv, A. K., Rambo, C. R., Porto, L. M., & Antônio, R. V., ‘’Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum,’’ Current Microbiology, 57: 469-476, (2008). DOI: https://doi.org/10.1007/s00284-008-9271-0
  • [24] Lima, J. L. D. C., Alves, L. R., Paz, J. N. P. D., Rabelo, M. A., Maciel, M. A. V., & Morais, M. M. C. D., ‘’Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia,’’ Revista Brasileira de Terapia Intensiva, 29: 310-316, (2017). DOI: https://doi.org/10.5935/0103-507X.20170039
  • [25] Laviniki, V., Simoni, C., Carloto, A. F., & Lopes, G. V., ‘’The biofilm-forming ability of Salmonella enterica subsp. enterica isolated from swine-feed mills,’’ Ciência Rural, 54(4): e20230146, (2023). DOI: https://doi.org/10.1590/0103-8478cr20230146
  • [26] Harika, K., Shenoy, V. P., Narasimhaswamy, N., & Chawla, K., ‘’Detection of biofilm production and its impact on antibiotic resistance profile of bacterial isolates from chronic wound infections,’’ Journal of Global Infectious Diseases, 12(3): 129-134, (2020). DOI: https://doi.org/10.4103/jgid.jgid_150_19
  • [27] Saxena, N., Maheshwari, D., Dadhich, D., & Singh, S., ‘’Evaluation of Congo red agar for detection of biofilm production by various clinical Candida isolates,’’ Journal of Evolution of Medical and Dental Sciences, 3(59): 13234-13238, (2014). DOI: https://doi.org/10.14260/jemds/2014/3761
  • [28] Ibrahim, E., & Hamzah, R., ‘’Biofilm formation by Candida albicans and Candida glabrata isolated from urine specimens of diabetic Iraqi women,’’ Journal of Life and Bio Sciences Research, 2(02): 59-63, (2021). DOI: https://doi.org/10.38094/jlbsr20246
  • [29] Dag, I., Kiraz, N., & Oz, Y., ‘’Evaluation of different detection methods of biofilm formation in clinical Candida isolates,’’ African Journal of Microbiology Research, 4(24): 2763-2768, (2010).
  • [30] Sindhanai, V., Avanthiga, S. S., & Suresh Chander, V. C., ‘’Antibiotic susceptibility pattern of biofilm forming and biofilm non-forming enterococci species,’’ IOSR Journal of Dental and Medical Sciences, 15: 33-37, (2016).
  • [31] Khalil, M. A., Alorabi, J. A., Al-Otaibi, L. M., Ali, S. S., & Elsilk, S. E., ‘’Antibiotic resistance and biofilm formation in Enterococcus spp. isolated from urinary tract infections,’’ Pathogens, 12(1): 34, (2022). DOI: https://doi.org/10.3390/pathogens12010034
  • [32] Gürkan, T., Külahcı, M. B., & Çıtak, S., ‘’Gıda örneklerinden izole edilen Enterococcus türlerinin çeşitli virülans özellikleri, biyofilm oluşumu ve antibiyotik dirençliliklerinin belirlenmesi,’’ Avrupa Bilim ve Teknoloji Dergisi, (28): 924-932, (2021). DOI: https://doi.org/10.31590/ejosat.1012135
  • [33] Normanita, R., ‘’Validity of Congo red agar and modified Congo red agar to detect biofilm of Enterococcus faecalis,’’ Saintika Medika, 16(1): 55-65, (2020). DOI: https://doi.org/10.22219/sm.Vol16.SMUMM1.11064
  • [34] Pradhan, R., Madhup, S., & Pant, S., ‘’Antibiogram and biofilm formation among carbapenem-resistant Klebsiella pneumoniae,’’ Tribhuvan University Journal of Microbiology, 6: 63-69, (2019). DOI: https://doi.org/10.3126/tujm.v6i0.26586
  • [35] Abebe, G., ‘’Detection of biofilm formation and antibiotic resistance in Klebsiella oxytoca and Klebsiella pneumoniae from animal origin foods,’’ IJMB, 5: 120, (2020). DOI: https://doi.org/10.11648/j.ijmb.20200503.17
  • [36] Knobloch, J., Horstkotte, M., Rohde, H., & Mack, D., Evaluation of different detection methods of biofilm formation in Staphylococcus aureus, Medical Microbiology and Immunology, 191, 101-106, (2002). DOI: https://doi.org/10.1007/s00430-002-0124-3
  • [37] Dilsha, T. K., Samuel, S., Rudrapathy, P., Murugesan, S., & Ke, S., ‘’Antibiotic resistance, mecA gene detection, and biofilm formation ability among coagulase-negative staphylococci in cancer patients,’’ Asian Journal of Pharmaceutical and Clinical Research, 15(1): 35-39, (2022). DOI: http://dx.doi.org/10.22159/ajpcr.2022v15i1.43416.
  • [38] Mariana, N., Salman, S. A., Neela, V., & Zamberi, S., ‘’Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin-resistant Staphylococcus aureus,’’ African Journal of Microbiology Research, 3: 330-338, (2009).
  • [39] Ramya, R., & Gopinath, S. M., ‘’Investigation of antibiofilm potential of Argemone mexicana and Calotropis gigantea against clinical isolates,’’ International Journal of Current Microbiology and Applied Sciences, 8(1): 3184-3193, (2019).
  • [40] Uhlich, G. A., Chen, C. Y., Cottrell, B. J., & Nguyen, L. H., ‘’Growth media and temperature effects on biofilm formation by serotype O157: H7 and non-O157 Shiga toxin-producing Escherichia coli,’’ FEMS Microbiology Letters, 354(2): 133-141, (2014). DOI: https://doi.org/10.1111/1574-6968.12439
  • [41] Reichhardt, C., Stevens, D. A., & Cegelski, L., ‘’Fungal biofilm composition and opportunities in drug discovery, Future Medicinal Chemistry,’’ 8(12): 1455-1468, (2016). https://doi.org/10.4155/fmc-2016-0049
  • [42] Yuan, L., Zhang, Y., Mi, Z., Zheng, X., Wang, S., Li, H., & Yang, Z., ‘’Calcium-mediated modulation of Pseudomonas fluorescens biofilm formation,’’ Journal of Dairy Science, 107(4): 1950-1966, (2024). DOI: https://doi.org/10.3168/jds.2023-23860
  • [43] Kart, D., Kustimur, A. S., Sağıroğlu, M., & Kalkancı, A., ‘’Evaluation of antimicrobial durability and anti-biofilm effects in urinary catheters against Enterococcus faecalis clinical isolates and reference strains,’’ Balkan Medical Journal, 34(6): 546-552, (2017).
  • [44] Bogut, A., & Magryś, A., ‘’The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections,’’ European Journal of Clinical Microbiology & Infectious Diseases, 40(11): 2249-2270, (2021). DOI: https://doi.org/10.1007/s10096-021-04315-1
  • [45] Sherif, M. M., Elkhatib, W. F., Khalaf, W. S., Elleboudy, N. S., & Abdelaziz, N. A., ‘’Multidrug resistant Acinetobacter baumannii biofilms: evaluation of phenotypic–genotypic association and susceptibility to cinnamic and gallic acids,’’ Frontiers in Microbiology, 12: 716627, (2021). DOI: https://doi.org/10.3389/fmicb.2021.716627
  • [46] Khan, M. A. S., Islam, Z., Shah, S. T., & Rahman, S. R., ‘’Characterization of biofilm formation and multi-drug resistance among Pseudomonas aeruginosa isolated from hospital wastewater in Dhaka, Bangladesh,’’ Journal of Water and Health, 22(5): 825-834, (2024). DOI: https://doi.org/10.2166/wh.2024.294
  • [47] Kowalska, J., Maćkiw, E., Stasiak, M., Kucharek, K., & Postupolski, J., ‘’Biofilm-forming ability of pathogenic bacteria isolated from retail food in Poland,’’ Journal of Food Protection, 83(12): 2032-2040, (2020). DOI: https://doi.org/10.4315/JFP-20-135
  • [48] Özdemir, F., & Arslan, S., ‘’Molecular characterization and biofilm formation of Escherichia coli from vegetables,’’ Sakarya University Journal of Science, 25(1): 12-21, (2021). DOI: https://doi.org/10.16984/saufenbilder.793400

Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method

Year 2025, Early View, 1 - 1

Abstract

This study focuses on the detection of biofilm formation using Congo Red Agar (CRA) and Crystal Violet Staining (CVS) methods. Biofilms are complex microbial communities formed by bacteria adhering to surfaces, surrounded by extracellular polymeric substances, which provide protection against external stressors. Biofilm formation plays a critical role in infection control and combating antibiotic resistance. In this research, the biofilm production capacities of 24 standard bacterial strains, 11 multidrug-resistant (MDR) strains, 9 foodborne isolates, and 24 clinical isolates were evaluated. The CRA method qualitatively identifies biofilm formation through colony morphology, while the CVS assay quantitatively measures biofilm production. The results demonstrated that 66.18% of the 68 microorganisms tested using CRA were biofilm positive, with Gram-positive bacteria generally exhibiting stronger biofilm production. The CVS assay further provided more precise measurements of biofilm production, identifying strong biofilm producers such as Enterococcus faecalis ATCC 29212, Pseudomonas fluorescens P1, and Staphylococcus aureus ATCC 25923. The study found that while CRA is effective in detecting strong biofilm producers, it has limitations in identifying weaker biofilm producers. In contrast, the CVS assay proved to be more sensitive and reliable. The findings also highlight that variations in biofilm production capacity emphasize the significance of biofilm management in clinical infections and the challenges encountered in treatment.

Project Number

FYL-2023-3263

Thanks

This study was presented at the IV. International Health Sciences Congress (2025) and published in the conference's abstract book. The research was funded by the Dokuz Eylul University, Department of Scientific Research Projects (Project No. FYL-2023-3263).

References

  • [1] Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmølle, M., Stewart, P. S., & Bjarnsholt, T., “The biofilm life cycle: expanding the conceptual model of biofilm formation,” Nature Reviews Microbiology, 20(10): 608-620, (2022). DOI: https://doi.org/10.1038/s41579-022-00767-0
  • [2] Rather, M. A., Gupta, K., & Mandal, M., “Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies,” Brazilian Journal of Microbiology, 52(12): 1-18, (2021). DOI: https://doi.org/10.1007/s42770-021-00624-x
  • [3] Sanchez, C. J., Mende, K., Beckius, M. L., Akers, K. S., Romano, D. R., Wenke, J. C., & Murray, C. K., “Biofilm formation by clinical isolates and the implications in chronic infections,” BMC Infectious Diseases, 13: 1-12, (2013). DOI: https://doi.org/10.1186/1471-2334-13-47
  • [4] Saising, J., Dube, L., Ziebandt, A. K., Voravuthikunchai, S. P., Nega, M., & Götz, F., “Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms,” Antimicrobial Agents and Chemotherapy, 56(11): 5804-5810, (2012). DOI: https://doi.org/10.1128/aac.01296-12
  • [5] Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., & Costerton, J. W., “Biofilm formation in Staphylococcus implant infections: A review of molecular mechanisms and implications for biofilm-resistant materials,” Biomaterials, 33(26): 5967-5982, (2012). DOI: https://doi.org/10.1016/j.biomaterials.2012.05.031
  • [6] World Health Organization (WHO). (2017). https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Access date: 09.01.2025.
  • [7] Kırmusaoğlu, S., ‘’The comparison of methods used for the detection of biofilm formation that cause antibiotic resistance of Staphylococcus epidermidis and Staphylococcus aureus,’’ Ortadoğu Tıp Dergisi, 9(1): 28-33, (2017). DOI: https://doi.org/10.21601/ortadogutipdergisi.299940
  • [8] Roy, R., Tiwari, M., Donelli, G., & Tiwari, V., ‘’Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action,’’ Virulence, 9(1): 522-554, (2018). DOI: https://doi.org/10.1080/21505594.2017.1313372
  • [9] George, T., Sivam, V., Vaiyapuri, M., Anandan, R., Sivaraman, G. K., & Joseph, T. C., ‘’Standardizing biofilm quantification: harmonizing crystal violet absorbance measurements through extinction coefficient ratio adjustment,’’ Archives of Microbiology, 207(3): 1-7, (2025). DOI: https://doi.org/10.1007/s00203-025-04251-0
  • [10] Manhas, P. L., Jadli, M., Sharma, R., Manhas, H., & Omar, B. J., ‘’A novel dual-staining method for cost-effective visualization and differentiation of microbial biofilms,’’ Scientific Reports, 14(1): 29169, (2024). DOI: https://doi.org/10.1038/s41598-024-80644-3
  • [11] Nirmala, B., & Omar, B. J., ‘’Microbial Biofilm Detection and Differentiation by Dual Staining Using Maneval’s Stain,’’ Bio-protocol, 15(5): e5228, (2025). DOI: https://doi.org/10.1038/s41598-024-80644-3
  • [12] Canlı, K., Yetgin, A., Benek, A., Bozyel, M. E., & Altuner, E. A., ‘’In vitro antimicrobial activity screening of ethanol extract of Lavandula stoechas and investigation of its biochemical composition,’’ Advances in Pharmacological and Pharmaceutical Sciences, 2019: 1-6, (2019). DOI: https://doi.org/10.1155/2019/3201458
  • [13] Xiong, Z., Tian, X., Wang, G., Song, X., Xia, Y., Zhang, H., & Ai, L., ‘’Development of a high-throughput screening method for exopolysaccharide-producing Streptococcus thermophilus based on Congo red,’’ Food Research International, 162: 112094, (2022). DOI: https://doi.org/10.1016/j.foodres.2022.112094
  • [14] Sultan, A. M., & Nabiel, Y., ‘’Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better?,’’ African Journal of Clinical and Experimental Microbiology, 20(1): 60-66, (2019). DOI: https://doi.org/10.4314/ajcem.v20i1.9
  • [15] Lee, J. S., Bae, Y. M., Han, A., & Lee, S. Y., ‘’Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp.,’’ LWT, 73: 707-714, (2016). DOI: https://doi.org/10.1016/j.lwt.2016.03.023
  • [16] Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F., ‘’Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci,’’ Apmis, 115(8): 891-899, (2007). DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • [17] Tunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M. E., Canli, K., & Altuner, E. M., ‘’Biological activities and biochemical composition of endemic Achillea fraasii,’’ Microorganisms, 11(4): 978, (2023). DOI: https://doi.org/10.3390/microorganisms11040978
  • [18] Ozturk, I., Yurtman, A. N., Erac, B., Gul-Yurtsever, S., Ermertcan, S., & Hosgor-Limoncu, M., ‘’In vitro effect of moxifloxacin and rifampicin on biofilm formation by clinical MRSA isolates,’’ Bratislavske lekarske listy, 115(8): 483-486, (2014). DOI: https://doi.org/10.4149/bll_2014_093
  • [19] Kajiura, T., Wada, H., Ito, K., Anzai, Y., & Kato, F., ‘’Conjugative plasmid transfer in the biofilm formed by Enterococcus faecalis,’’ Journal of Health Science, 52(4): 358-367, (2006). DOI: https://doi.org/10.1248/jhs.52.358
  • [20] Jin, H., Zhou, R., Kang, M., Luo, R., Cai, X., & Chen, H., ‘’Biofilm formation by field isolates and reference strains of Haemophilus parasuis,’’ Veterinary Microbiology, 118(1-2): 117-123, (2006). DOI: https://doi.org/10.1016/j.vetmic.2006.07.009
  • [21] Katongole, P., Nalubega, F., Florence, N. C., Asiimwe, B., & Andia, I., ‘’Biofilm formation, antimicrobial susceptibility and virulence genes of uropathogenic Escherichia coli isolated from clinical isolates in Uganda,’’ BMC Infectious Diseases, 20: 1-6, (2020). DOI: https://doi.org/10.1186/s12879-020-05186-1
  • [22] Sivaranjani, M., McCarthy, M. C., Sniatynski, M. K., Wu, L., Dillon, J. A. R., Rubin, J. E., & White, A. P., ‘’Biofilm formation and antimicrobial susceptibility of E. coli associated with colibacillosis outbreaks in broiler chickens from Saskatchewan,’’ Frontiers in Microbiology, 13: 841516, (2022). DOI: https://doi.org/10.3389/fmicb.2022.841516
  • [23] Recouvreux, D. O., Carminatti, C. A., Pitlovanciv, A. K., Rambo, C. R., Porto, L. M., & Antônio, R. V., ‘’Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum,’’ Current Microbiology, 57: 469-476, (2008). DOI: https://doi.org/10.1007/s00284-008-9271-0
  • [24] Lima, J. L. D. C., Alves, L. R., Paz, J. N. P. D., Rabelo, M. A., Maciel, M. A. V., & Morais, M. M. C. D., ‘’Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia,’’ Revista Brasileira de Terapia Intensiva, 29: 310-316, (2017). DOI: https://doi.org/10.5935/0103-507X.20170039
  • [25] Laviniki, V., Simoni, C., Carloto, A. F., & Lopes, G. V., ‘’The biofilm-forming ability of Salmonella enterica subsp. enterica isolated from swine-feed mills,’’ Ciência Rural, 54(4): e20230146, (2023). DOI: https://doi.org/10.1590/0103-8478cr20230146
  • [26] Harika, K., Shenoy, V. P., Narasimhaswamy, N., & Chawla, K., ‘’Detection of biofilm production and its impact on antibiotic resistance profile of bacterial isolates from chronic wound infections,’’ Journal of Global Infectious Diseases, 12(3): 129-134, (2020). DOI: https://doi.org/10.4103/jgid.jgid_150_19
  • [27] Saxena, N., Maheshwari, D., Dadhich, D., & Singh, S., ‘’Evaluation of Congo red agar for detection of biofilm production by various clinical Candida isolates,’’ Journal of Evolution of Medical and Dental Sciences, 3(59): 13234-13238, (2014). DOI: https://doi.org/10.14260/jemds/2014/3761
  • [28] Ibrahim, E., & Hamzah, R., ‘’Biofilm formation by Candida albicans and Candida glabrata isolated from urine specimens of diabetic Iraqi women,’’ Journal of Life and Bio Sciences Research, 2(02): 59-63, (2021). DOI: https://doi.org/10.38094/jlbsr20246
  • [29] Dag, I., Kiraz, N., & Oz, Y., ‘’Evaluation of different detection methods of biofilm formation in clinical Candida isolates,’’ African Journal of Microbiology Research, 4(24): 2763-2768, (2010).
  • [30] Sindhanai, V., Avanthiga, S. S., & Suresh Chander, V. C., ‘’Antibiotic susceptibility pattern of biofilm forming and biofilm non-forming enterococci species,’’ IOSR Journal of Dental and Medical Sciences, 15: 33-37, (2016).
  • [31] Khalil, M. A., Alorabi, J. A., Al-Otaibi, L. M., Ali, S. S., & Elsilk, S. E., ‘’Antibiotic resistance and biofilm formation in Enterococcus spp. isolated from urinary tract infections,’’ Pathogens, 12(1): 34, (2022). DOI: https://doi.org/10.3390/pathogens12010034
  • [32] Gürkan, T., Külahcı, M. B., & Çıtak, S., ‘’Gıda örneklerinden izole edilen Enterococcus türlerinin çeşitli virülans özellikleri, biyofilm oluşumu ve antibiyotik dirençliliklerinin belirlenmesi,’’ Avrupa Bilim ve Teknoloji Dergisi, (28): 924-932, (2021). DOI: https://doi.org/10.31590/ejosat.1012135
  • [33] Normanita, R., ‘’Validity of Congo red agar and modified Congo red agar to detect biofilm of Enterococcus faecalis,’’ Saintika Medika, 16(1): 55-65, (2020). DOI: https://doi.org/10.22219/sm.Vol16.SMUMM1.11064
  • [34] Pradhan, R., Madhup, S., & Pant, S., ‘’Antibiogram and biofilm formation among carbapenem-resistant Klebsiella pneumoniae,’’ Tribhuvan University Journal of Microbiology, 6: 63-69, (2019). DOI: https://doi.org/10.3126/tujm.v6i0.26586
  • [35] Abebe, G., ‘’Detection of biofilm formation and antibiotic resistance in Klebsiella oxytoca and Klebsiella pneumoniae from animal origin foods,’’ IJMB, 5: 120, (2020). DOI: https://doi.org/10.11648/j.ijmb.20200503.17
  • [36] Knobloch, J., Horstkotte, M., Rohde, H., & Mack, D., Evaluation of different detection methods of biofilm formation in Staphylococcus aureus, Medical Microbiology and Immunology, 191, 101-106, (2002). DOI: https://doi.org/10.1007/s00430-002-0124-3
  • [37] Dilsha, T. K., Samuel, S., Rudrapathy, P., Murugesan, S., & Ke, S., ‘’Antibiotic resistance, mecA gene detection, and biofilm formation ability among coagulase-negative staphylococci in cancer patients,’’ Asian Journal of Pharmaceutical and Clinical Research, 15(1): 35-39, (2022). DOI: http://dx.doi.org/10.22159/ajpcr.2022v15i1.43416.
  • [38] Mariana, N., Salman, S. A., Neela, V., & Zamberi, S., ‘’Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin-resistant Staphylococcus aureus,’’ African Journal of Microbiology Research, 3: 330-338, (2009).
  • [39] Ramya, R., & Gopinath, S. M., ‘’Investigation of antibiofilm potential of Argemone mexicana and Calotropis gigantea against clinical isolates,’’ International Journal of Current Microbiology and Applied Sciences, 8(1): 3184-3193, (2019).
  • [40] Uhlich, G. A., Chen, C. Y., Cottrell, B. J., & Nguyen, L. H., ‘’Growth media and temperature effects on biofilm formation by serotype O157: H7 and non-O157 Shiga toxin-producing Escherichia coli,’’ FEMS Microbiology Letters, 354(2): 133-141, (2014). DOI: https://doi.org/10.1111/1574-6968.12439
  • [41] Reichhardt, C., Stevens, D. A., & Cegelski, L., ‘’Fungal biofilm composition and opportunities in drug discovery, Future Medicinal Chemistry,’’ 8(12): 1455-1468, (2016). https://doi.org/10.4155/fmc-2016-0049
  • [42] Yuan, L., Zhang, Y., Mi, Z., Zheng, X., Wang, S., Li, H., & Yang, Z., ‘’Calcium-mediated modulation of Pseudomonas fluorescens biofilm formation,’’ Journal of Dairy Science, 107(4): 1950-1966, (2024). DOI: https://doi.org/10.3168/jds.2023-23860
  • [43] Kart, D., Kustimur, A. S., Sağıroğlu, M., & Kalkancı, A., ‘’Evaluation of antimicrobial durability and anti-biofilm effects in urinary catheters against Enterococcus faecalis clinical isolates and reference strains,’’ Balkan Medical Journal, 34(6): 546-552, (2017).
  • [44] Bogut, A., & Magryś, A., ‘’The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections,’’ European Journal of Clinical Microbiology & Infectious Diseases, 40(11): 2249-2270, (2021). DOI: https://doi.org/10.1007/s10096-021-04315-1
  • [45] Sherif, M. M., Elkhatib, W. F., Khalaf, W. S., Elleboudy, N. S., & Abdelaziz, N. A., ‘’Multidrug resistant Acinetobacter baumannii biofilms: evaluation of phenotypic–genotypic association and susceptibility to cinnamic and gallic acids,’’ Frontiers in Microbiology, 12: 716627, (2021). DOI: https://doi.org/10.3389/fmicb.2021.716627
  • [46] Khan, M. A. S., Islam, Z., Shah, S. T., & Rahman, S. R., ‘’Characterization of biofilm formation and multi-drug resistance among Pseudomonas aeruginosa isolated from hospital wastewater in Dhaka, Bangladesh,’’ Journal of Water and Health, 22(5): 825-834, (2024). DOI: https://doi.org/10.2166/wh.2024.294
  • [47] Kowalska, J., Maćkiw, E., Stasiak, M., Kucharek, K., & Postupolski, J., ‘’Biofilm-forming ability of pathogenic bacteria isolated from retail food in Poland,’’ Journal of Food Protection, 83(12): 2032-2040, (2020). DOI: https://doi.org/10.4315/JFP-20-135
  • [48] Özdemir, F., & Arslan, S., ‘’Molecular characterization and biofilm formation of Escherichia coli from vegetables,’’ Sakarya University Journal of Science, 25(1): 12-21, (2021). DOI: https://doi.org/10.16984/saufenbilder.793400
There are 48 citations in total.

Details

Primary Language English
Subjects Bacteriology, Microbiology (Other)
Journal Section Research Article
Authors

Dilay Turu 0000-0002-8485-0488

Kerem Canlı 0000-0001-6061-6948

Project Number FYL-2023-3263
Early Pub Date September 7, 2025
Publication Date October 14, 2025
Submission Date April 5, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Early View

Cite

APA Turu, D., & Canlı, K. (2025). Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method. Gazi University Journal of Science1-1.
AMA Turu D, Canlı K. Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method. Gazi University Journal of Science. Published online September 1, 2025:1-1.
Chicago Turu, Dilay, and Kerem Canlı. “Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method”. Gazi University Journal of Science, September (September 2025), 1-1.
EndNote Turu D, Canlı K (September 1, 2025) Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method. Gazi University Journal of Science 1–1.
IEEE D. Turu and K. Canlı, “Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method”, Gazi University Journal of Science, pp. 1–1, September2025.
ISNAD Turu, Dilay - Canlı, Kerem. “Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method”. Gazi University Journal of Science. September2025. 1-1.
JAMA Turu D, Canlı K. Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method. Gazi University Journal of Science. 2025;:1–1.
MLA Turu, Dilay and Kerem Canlı. “Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method”. Gazi University Journal of Science, 2025, pp. 1-1.
Vancouver Turu D, Canlı K. Detection of Biofilm Formation: Evaluation of Congo Red Agar and Crystal Violet Staining Method. Gazi University Journal of Science. 2025:1-.