Research Article
BibTex RIS Cite
Year 2020, Volume: 33 Issue: 3, 662 - 671, 01.09.2020
https://doi.org/10.35378/gujs.615818

Abstract

References

  • [1] Carter, M.J., Rillema, D.P., Basolo, F.J., “Oxygen carrier and redox properties of some neutral cobalt chelates. Axial and in-plane ligand effects”, Am. Chem. Soc., 96, 392-400, (1974).
  • [2] Asada, H., Hayashi, K., Negoro, S., Fujiwara, M., Matsushita, T., “Preparation and structures of trinuclear manganese(II) complexes with N-2-pyridiylmethylidene-2-hydroxy-5-substituted-phenylamine”, Inorg. Chem. Commun., 6, 193-196, (2003).
  • [3] Saghatforoush, L., Aminkhani, A., Ershad, S., Karimnezhad, G., Ghammamy, S., Kabiri, R., “Preparation of Zinc (II) and Cadmium (II) Complexes of the Tetradentate Schiff Base Ligand 2-((E)-(2-(2-(pyridine-2-yl)-ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH)”, Molecules, 13, 804-811, (2008).
  • [4] Li, S., Chen, S., Ma, H., Yu, R., Liu, D.,“Investigation on some Schiff bases as HCl corrosioninhibitors for copper”, Corros. Sci., 41, 1273-1287, (1999).
  • [5] Khalifa, K.M., Maihub, A.A., El-Ajaily, M.M., Mobain, S.A., “Coordination Trends of 6-Amino-4-hydroxy-2-mercaptopyrimidine Towards Co (II), Ni (II) and Cu (II) Ions”, J. Chem. Soc. Pak., 32, 650-653, (2010).
  • [6] Unaleroglu, C., Temelli, B., Hokelek, T., “Conformational and structural analysis of N-N′-bis(4-methoxybenzylidene)ethylenediamine”, J. Mol. Struct., 570, 91-95, (2001).
  • [7] Barba, V., Santillan, R., Farfan, N., “Dimeric Boronates Derived from the Reaction of Schiff Bases and Boronic Acids”, J. Braz. Chem. Soc., 16, 449-455, (2005).
  • [8] Chen, W., Ou, W., Wang, L., Hao, Y., Cheng, J., Li, J., Liu, Y.N., “Synthesis and biological evaluation of hydroxyl-substituted Schiff-bases containing ferrocenyl moieties”, Dalton Trans. 42, 15678-15686, (2013).
  • [9] Cheng, L., Tang, -X., Luo, X., Jin, -L., Dai, F., Yang, J., Y.-P. Qian, Li, X.-Z., Zhou, B., “Antioxidant and antiproliferative activities of hydroxyl-substituted Schiff bases”, Bioorg. Med. Chem. Lett., 20, 2417-2420, (2010).
  • [10] Norman, D.W., Edwards, J.P., Vogels, C.M., Decken, A.S., Westcott, A., “Synthesis and reactivity of novel Schiff bases containing boronate esters”, Can. J. Chem., 80, 31-40, (2002).
  • [11] Singh, R.V., Biyala, M.K., “Structural Studies with Antimicrobial and Antifertility Activity of a Monofunctional Bidentate Ligand with its Boron(III), Palladium(II), and Platinum(II) Complexes”, Phosphorus Sulfur Silicon Relat. Elem., 181, 1477-1491, (2006).
  • [12] Hou, A., Zhang, C., Wang, Y., “Preparation and UV-protective properties of functional cellulose fabrics based on reactive azobenzene Schiff base derivative”, Carbohydr Polym., 87, 284-288, (2012).
  • [13] Farag, A.M., Siang, T.G., Osman, H., Eltayeb, N.E., Khadeer Ahamed, M.B., Abdul Majid, A.M.S., Balal, I.A.A., “Synthesis, characterizationand in vitro cytotoxic properties of some novel Schiff base metal complexes in HepG2 cells”, World Appl Sci J., 11, 1196–1209, (2010).
  • [14] Sarı, N., Yüzüak, N., “Synthesis and Characterization of Novel Polymeric-Schiff Bases and Their Complexes”, J Inorg Organomet Polym Mater., 16, 259-269, (2006).
  • [15] Rice-Evans, C.A., Diplock, A.T., Symons, M.C.R., Techniques in Free Radical Research 1st ed., Elsevier, Amsterdam, (1991).
  • [16] Griendling, K.K., FitzGerald, G.A., “Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS”, Circulation, 108, 1912-1916, (2003).
  • [17] Reuter, S., Gupta, C.S., Chaturvedi, M.M., Aggarwal, B.B. “Oxidative stress, inflammation, and cancer: How are they linked? ”, Free Radical Bio Med., 49, 1603-1616, (2010).
  • [18] Nihro, S.Y., Ueda, T., Miki, H., Matsomota, H., Satoh, T., “Protective effects of hydroxychalcones on free radical-induced cell damage”, Biol Pharm Bull., 17, 251-256, (1994).
  • [19] Zerner, B., “Recent advances in the chemistry of an old enzyme, urease”, Bioorganic Chem., 19, 116-131, (1991).
  • [20] Krajewska, B., Van-Eldik, R., Brindell, M., “Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease”, Implications for the catalytic mechanism, J Biol Inorg Chem., 17, 1123-1134, (2012).
  • [21] Mobley, H.L.T., Island, M.D., Hausinger, R.P., “Molecular biology of microbial ureases”, Microbiol. Rev., 59, 451-480, (1995).
  • [22] Warren, J.R. Marshall, B., “Unidentified curved bacilli on gastric epithelium in active chronic gastritis”, Lancet., 1, 1273-1275, (1983).
  • [23] Maroney, M., Ciurli, J. S., “Nonredox Nickel Enzymes”, Chem. Rev., 114, 4206-4228, (2014).
  • [24] Mazzei, L., Cianci, M., Benini, S., Bertini, L., Musiani, F. Ciurli, S., “Inactivation of urease by 1, 4-benzoquinone: chemistry at the protein surface”, J. Inorg. Biochem., 154, 42-49, (2016).
  • [25] Gumrukcuoglu, N., Serdar, M., Celik, E., Sevim, A., Demirbas, N., “Synthesis and Antimicrobial Activities of Some New 1, 2, 4-Triazole Derivatives”, Turk. J. Chem., 31, 335-348, (2007).
  • [26] Brand-Williams, W., Cuvelier, M.W. and Berset, C., “Use of a free radical method to evaluate antioxidant activity”, LWT-Food Sci. Technol., 28, 25-30, (1995).
  • [27] Arnao, M.B., Cano, A., Acosta, M., “The hydrophilic and lipophilic contribution to total antioxidant activity”, Food Chem., 73, 239-244, (2001).
  • [28] Oyaizu, M., “Studies on Products of Browning Reaction”, Japan J Nutr., 44, 307-315, (1986).
  • [29] Van Slyke, D.D. and Archibald, R.M., “Manometric, Titrimetric, And Colorimetric Methods For Measurement Of Urease Activity”, BJ. Biol. Chem., 154, 623-642, (1944).
  • [30] Nelson, S.M., Knox, C.V., Cann Drew, M.Mc., “Metal-ion-controlled transamination in the synthesis of macrocyclic Schiff-base ligands. Part I. Reactions of 2, 6-diacetylpyridine and dicarbonyl compounds with 3, 6-dioxaoctane-1,8-diamine”, J. Chem. Soc. Dalton Trans., 8, 1669-1677, (1981).
  • [31] Gumrukcuoglu, N., Ugras, S., Ugras, H.I., Cakir, U., “Synthesis, extraction and antibacterial studies of some new bis-1,2,4-triazole derivatives part II”, J. Incl. Phenom. Macrocycl. Chem., 73, 359-367, (2012).

Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities

Year 2020, Volume: 33 Issue: 3, 662 - 671, 01.09.2020
https://doi.org/10.35378/gujs.615818

Abstract

A series of Schiff base ligands containing 1,2,4-triazole ring were obtained by the addition of aldehydes to the amino compound under mild conditions in 80–82% yields. A reduction of these ligands with sodium borohydride resulted in Schiff base reduction products. New ligands were investigated for their antioxidant activities such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2’-azino-bis (3-ethylbenzo-thizoline-6-sulphonic acid) diammonium salt) radical scavenging and reducing power. 1H and 13C-NMR spectra (δ, ppm) were observed on a Varian Mercury 200 MHz spectrophotometer as standard substance using tetramethylsilane Match constants (J values) were given as Hertz. NMR coefficients are truncated as follows: s=singlet, d=dublet, t=triplet, m=multiplet signal. Combustion analysis was performed on a Carlo Erba 1106 elemental analyzer. All the compounds gave C, H, and N analysis results within ±0.6 % of the theoretical values. The IR spectra (υ, cm−1) were viewed with a Perkin-Elmer 1600 FTIR spectrometer in KBr pellets. 

References

  • [1] Carter, M.J., Rillema, D.P., Basolo, F.J., “Oxygen carrier and redox properties of some neutral cobalt chelates. Axial and in-plane ligand effects”, Am. Chem. Soc., 96, 392-400, (1974).
  • [2] Asada, H., Hayashi, K., Negoro, S., Fujiwara, M., Matsushita, T., “Preparation and structures of trinuclear manganese(II) complexes with N-2-pyridiylmethylidene-2-hydroxy-5-substituted-phenylamine”, Inorg. Chem. Commun., 6, 193-196, (2003).
  • [3] Saghatforoush, L., Aminkhani, A., Ershad, S., Karimnezhad, G., Ghammamy, S., Kabiri, R., “Preparation of Zinc (II) and Cadmium (II) Complexes of the Tetradentate Schiff Base Ligand 2-((E)-(2-(2-(pyridine-2-yl)-ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH)”, Molecules, 13, 804-811, (2008).
  • [4] Li, S., Chen, S., Ma, H., Yu, R., Liu, D.,“Investigation on some Schiff bases as HCl corrosioninhibitors for copper”, Corros. Sci., 41, 1273-1287, (1999).
  • [5] Khalifa, K.M., Maihub, A.A., El-Ajaily, M.M., Mobain, S.A., “Coordination Trends of 6-Amino-4-hydroxy-2-mercaptopyrimidine Towards Co (II), Ni (II) and Cu (II) Ions”, J. Chem. Soc. Pak., 32, 650-653, (2010).
  • [6] Unaleroglu, C., Temelli, B., Hokelek, T., “Conformational and structural analysis of N-N′-bis(4-methoxybenzylidene)ethylenediamine”, J. Mol. Struct., 570, 91-95, (2001).
  • [7] Barba, V., Santillan, R., Farfan, N., “Dimeric Boronates Derived from the Reaction of Schiff Bases and Boronic Acids”, J. Braz. Chem. Soc., 16, 449-455, (2005).
  • [8] Chen, W., Ou, W., Wang, L., Hao, Y., Cheng, J., Li, J., Liu, Y.N., “Synthesis and biological evaluation of hydroxyl-substituted Schiff-bases containing ferrocenyl moieties”, Dalton Trans. 42, 15678-15686, (2013).
  • [9] Cheng, L., Tang, -X., Luo, X., Jin, -L., Dai, F., Yang, J., Y.-P. Qian, Li, X.-Z., Zhou, B., “Antioxidant and antiproliferative activities of hydroxyl-substituted Schiff bases”, Bioorg. Med. Chem. Lett., 20, 2417-2420, (2010).
  • [10] Norman, D.W., Edwards, J.P., Vogels, C.M., Decken, A.S., Westcott, A., “Synthesis and reactivity of novel Schiff bases containing boronate esters”, Can. J. Chem., 80, 31-40, (2002).
  • [11] Singh, R.V., Biyala, M.K., “Structural Studies with Antimicrobial and Antifertility Activity of a Monofunctional Bidentate Ligand with its Boron(III), Palladium(II), and Platinum(II) Complexes”, Phosphorus Sulfur Silicon Relat. Elem., 181, 1477-1491, (2006).
  • [12] Hou, A., Zhang, C., Wang, Y., “Preparation and UV-protective properties of functional cellulose fabrics based on reactive azobenzene Schiff base derivative”, Carbohydr Polym., 87, 284-288, (2012).
  • [13] Farag, A.M., Siang, T.G., Osman, H., Eltayeb, N.E., Khadeer Ahamed, M.B., Abdul Majid, A.M.S., Balal, I.A.A., “Synthesis, characterizationand in vitro cytotoxic properties of some novel Schiff base metal complexes in HepG2 cells”, World Appl Sci J., 11, 1196–1209, (2010).
  • [14] Sarı, N., Yüzüak, N., “Synthesis and Characterization of Novel Polymeric-Schiff Bases and Their Complexes”, J Inorg Organomet Polym Mater., 16, 259-269, (2006).
  • [15] Rice-Evans, C.A., Diplock, A.T., Symons, M.C.R., Techniques in Free Radical Research 1st ed., Elsevier, Amsterdam, (1991).
  • [16] Griendling, K.K., FitzGerald, G.A., “Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS”, Circulation, 108, 1912-1916, (2003).
  • [17] Reuter, S., Gupta, C.S., Chaturvedi, M.M., Aggarwal, B.B. “Oxidative stress, inflammation, and cancer: How are they linked? ”, Free Radical Bio Med., 49, 1603-1616, (2010).
  • [18] Nihro, S.Y., Ueda, T., Miki, H., Matsomota, H., Satoh, T., “Protective effects of hydroxychalcones on free radical-induced cell damage”, Biol Pharm Bull., 17, 251-256, (1994).
  • [19] Zerner, B., “Recent advances in the chemistry of an old enzyme, urease”, Bioorganic Chem., 19, 116-131, (1991).
  • [20] Krajewska, B., Van-Eldik, R., Brindell, M., “Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease”, Implications for the catalytic mechanism, J Biol Inorg Chem., 17, 1123-1134, (2012).
  • [21] Mobley, H.L.T., Island, M.D., Hausinger, R.P., “Molecular biology of microbial ureases”, Microbiol. Rev., 59, 451-480, (1995).
  • [22] Warren, J.R. Marshall, B., “Unidentified curved bacilli on gastric epithelium in active chronic gastritis”, Lancet., 1, 1273-1275, (1983).
  • [23] Maroney, M., Ciurli, J. S., “Nonredox Nickel Enzymes”, Chem. Rev., 114, 4206-4228, (2014).
  • [24] Mazzei, L., Cianci, M., Benini, S., Bertini, L., Musiani, F. Ciurli, S., “Inactivation of urease by 1, 4-benzoquinone: chemistry at the protein surface”, J. Inorg. Biochem., 154, 42-49, (2016).
  • [25] Gumrukcuoglu, N., Serdar, M., Celik, E., Sevim, A., Demirbas, N., “Synthesis and Antimicrobial Activities of Some New 1, 2, 4-Triazole Derivatives”, Turk. J. Chem., 31, 335-348, (2007).
  • [26] Brand-Williams, W., Cuvelier, M.W. and Berset, C., “Use of a free radical method to evaluate antioxidant activity”, LWT-Food Sci. Technol., 28, 25-30, (1995).
  • [27] Arnao, M.B., Cano, A., Acosta, M., “The hydrophilic and lipophilic contribution to total antioxidant activity”, Food Chem., 73, 239-244, (2001).
  • [28] Oyaizu, M., “Studies on Products of Browning Reaction”, Japan J Nutr., 44, 307-315, (1986).
  • [29] Van Slyke, D.D. and Archibald, R.M., “Manometric, Titrimetric, And Colorimetric Methods For Measurement Of Urease Activity”, BJ. Biol. Chem., 154, 623-642, (1944).
  • [30] Nelson, S.M., Knox, C.V., Cann Drew, M.Mc., “Metal-ion-controlled transamination in the synthesis of macrocyclic Schiff-base ligands. Part I. Reactions of 2, 6-diacetylpyridine and dicarbonyl compounds with 3, 6-dioxaoctane-1,8-diamine”, J. Chem. Soc. Dalton Trans., 8, 1669-1677, (1981).
  • [31] Gumrukcuoglu, N., Ugras, S., Ugras, H.I., Cakir, U., “Synthesis, extraction and antibacterial studies of some new bis-1,2,4-triazole derivatives part II”, J. Incl. Phenom. Macrocycl. Chem., 73, 359-367, (2012).
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Nurhan Gümrükçüoğlu 0000-0002-9669-6318

Bahar Bilgin Sökmen 0000-0003-3904-8178

Publication Date September 1, 2020
Published in Issue Year 2020 Volume: 33 Issue: 3

Cite

APA Gümrükçüoğlu, N., & Bilgin Sökmen, B. (2020). Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. Gazi University Journal of Science, 33(3), 662-671. https://doi.org/10.35378/gujs.615818
AMA Gümrükçüoğlu N, Bilgin Sökmen B. Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. Gazi University Journal of Science. September 2020;33(3):662-671. doi:10.35378/gujs.615818
Chicago Gümrükçüoğlu, Nurhan, and Bahar Bilgin Sökmen. “Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities”. Gazi University Journal of Science 33, no. 3 (September 2020): 662-71. https://doi.org/10.35378/gujs.615818.
EndNote Gümrükçüoğlu N, Bilgin Sökmen B (September 1, 2020) Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. Gazi University Journal of Science 33 3 662–671.
IEEE N. Gümrükçüoğlu and B. Bilgin Sökmen, “Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities”, Gazi University Journal of Science, vol. 33, no. 3, pp. 662–671, 2020, doi: 10.35378/gujs.615818.
ISNAD Gümrükçüoğlu, Nurhan - Bilgin Sökmen, Bahar. “Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities”. Gazi University Journal of Science 33/3 (September 2020), 662-671. https://doi.org/10.35378/gujs.615818.
JAMA Gümrükçüoğlu N, Bilgin Sökmen B. Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. Gazi University Journal of Science. 2020;33:662–671.
MLA Gümrükçüoğlu, Nurhan and Bahar Bilgin Sökmen. “Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities”. Gazi University Journal of Science, vol. 33, no. 3, 2020, pp. 662-71, doi:10.35378/gujs.615818.
Vancouver Gümrükçüoğlu N, Bilgin Sökmen B. Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. Gazi University Journal of Science. 2020;33(3):662-71.