Research Article
BibTex RIS Cite
Year 2020, Volume: 33 Issue: 4, 925 - 941, 01.12.2020
https://doi.org/10.35378/gujs.607974

Abstract

References

  • Gumbel, E.J., Statistics of Extremes. Columbia University Press(1958).
  • Kotz, S. and S. Nadarajah, Extreme Value Distributions: Theory and Applications. London: Imperial College Press (2000).
  • Gómez, Y.M., H. Bolfarine, and H.W. Gómez, "Gumbel distribution with heavy tails and applications to environmental data". Mathematics and Computers in Simulation: (2018).
  • Nadarajah, S., "The exponentiated Gumbel distribution with climate application". Environmetrics, 17: 13-23 (2006).
  • Eugene, N., C. Lee, and F. Famoye, "Beta-Normal distribution and Its applications". Communications in Statistics - Theory and Methods, 31(4): 497-512 (2002).
  • Nadarajah, S. and S. Kotz, "The beta Gumbel distribution". Mathematical Problems in Engineering, 4: 323-332 (2004).
  • Cordeiro, G.M., S. Nadarajah, and E.M. Ortega, "The Kumaraswamy Gumbel distribution.". Statistical Methods and Applications, 21(2): 139-168 (2012).
  • Kumaraswamy, P., "A Generalized Probability Density Function for Doubly Bounded Random Process". Journal of Hydrology, 46: 79-88 (1980).
  • Jones, M.C., "Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages.". Statistical Methodology, 6: 70–81 (2009).
  • Gupta, R.D. and D. Kundu, "Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions". Biometrical Journal, 43(1): 117-130 (2001).
  • Okasha, H.M., "A New Family of Topp and Leone Geometric Distribution with Reliability Applications". Journal of Failure Analysis and Prevention: 1-13 (2017).
  • Gilchrist, W.G., Statistical modelling with quantile functions Boca Raton, LA: Chapman &Hall/CRC(2001).
  • Prudnikov, A.P., Y.A. Brychkov, and O.I. Marichev, Integrals and Series: Elementary functions. Vol. 1. Amsterdam: Gordon and Breach(1986).
  • Shahbaz, M.Q., et al., Ordered Random Variables: Theory and Applications. Paris: Atlantis press(2016).
  • Thukral, A.K., "Factorials of real negative and imaginary numbers - A new perspective". SpringerPlus, 2(658): (2014).
  • Akinsete, A., F. Famoye, and C. Lee, "The beta-Pareto distribution". Statistics, 42(6): 547-563 (2008).
  • Nadarajah, S., "The beta exponential distribution". Reliability Eng. Syst. Safety, 91: 689-697 (2006).
  • Hinkley, D., "On quick choice of power transformations". The American Statistician, 26: 67-69 (1977).
  • Changery, M.J., "Historical Extreme Winds for the United States: Atlantic and Gulf of Mexico Coastlines", North Carolina, U.S. Nuclear Regulatory Commission, (1982).
  • Andrade, T., et al., "The Exponentiated Generalized Gumbel Distribution". Revista Colombiana de Estadística, 38(1): 123-143 (2015).
  • Kinnison, R.R., Applied Extreme Value Statistics. 1983, Pacific Northwest Laboratory: Washington.

Gumbel-Geometric Distribution: Properties and Applications

Year 2020, Volume: 33 Issue: 4, 925 - 941, 01.12.2020
https://doi.org/10.35378/gujs.607974

Abstract

A three-parameter generalization of the Gumbel distribution, which we call Gumbel-geometric distribution, is defined and investigated. The shape of the density and hazard function is examined and discussed. Explicit expressions for the moment generating function, the characteristics function and the rth order statistic are obtained. Other properties of the distribution are also discussed. The method of maximum likelihood is proposed for the estimation of the parameter of the model and discussed. A simulation experiment is carried out to examine the asymptotic properties of the distribution. The result shows that the MSE decreases to zero as while the bias either increases or decreases (depending on the sign) for each of the parameters. The new distribution is applied to two datasets and compared to some existing generalization to illustrate its flexibility.  

References

  • Gumbel, E.J., Statistics of Extremes. Columbia University Press(1958).
  • Kotz, S. and S. Nadarajah, Extreme Value Distributions: Theory and Applications. London: Imperial College Press (2000).
  • Gómez, Y.M., H. Bolfarine, and H.W. Gómez, "Gumbel distribution with heavy tails and applications to environmental data". Mathematics and Computers in Simulation: (2018).
  • Nadarajah, S., "The exponentiated Gumbel distribution with climate application". Environmetrics, 17: 13-23 (2006).
  • Eugene, N., C. Lee, and F. Famoye, "Beta-Normal distribution and Its applications". Communications in Statistics - Theory and Methods, 31(4): 497-512 (2002).
  • Nadarajah, S. and S. Kotz, "The beta Gumbel distribution". Mathematical Problems in Engineering, 4: 323-332 (2004).
  • Cordeiro, G.M., S. Nadarajah, and E.M. Ortega, "The Kumaraswamy Gumbel distribution.". Statistical Methods and Applications, 21(2): 139-168 (2012).
  • Kumaraswamy, P., "A Generalized Probability Density Function for Doubly Bounded Random Process". Journal of Hydrology, 46: 79-88 (1980).
  • Jones, M.C., "Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages.". Statistical Methodology, 6: 70–81 (2009).
  • Gupta, R.D. and D. Kundu, "Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions". Biometrical Journal, 43(1): 117-130 (2001).
  • Okasha, H.M., "A New Family of Topp and Leone Geometric Distribution with Reliability Applications". Journal of Failure Analysis and Prevention: 1-13 (2017).
  • Gilchrist, W.G., Statistical modelling with quantile functions Boca Raton, LA: Chapman &Hall/CRC(2001).
  • Prudnikov, A.P., Y.A. Brychkov, and O.I. Marichev, Integrals and Series: Elementary functions. Vol. 1. Amsterdam: Gordon and Breach(1986).
  • Shahbaz, M.Q., et al., Ordered Random Variables: Theory and Applications. Paris: Atlantis press(2016).
  • Thukral, A.K., "Factorials of real negative and imaginary numbers - A new perspective". SpringerPlus, 2(658): (2014).
  • Akinsete, A., F. Famoye, and C. Lee, "The beta-Pareto distribution". Statistics, 42(6): 547-563 (2008).
  • Nadarajah, S., "The beta exponential distribution". Reliability Eng. Syst. Safety, 91: 689-697 (2006).
  • Hinkley, D., "On quick choice of power transformations". The American Statistician, 26: 67-69 (1977).
  • Changery, M.J., "Historical Extreme Winds for the United States: Atlantic and Gulf of Mexico Coastlines", North Carolina, U.S. Nuclear Regulatory Commission, (1982).
  • Andrade, T., et al., "The Exponentiated Generalized Gumbel Distribution". Revista Colombiana de Estadística, 38(1): 123-143 (2015).
  • Kinnison, R.R., Applied Extreme Value Statistics. 1983, Pacific Northwest Laboratory: Washington.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Statistics
Authors

Bamidele Oseni 0000-0002-7608-1930

Hassan Okasha This is me 0000-0002-2707-7716

Publication Date December 1, 2020
Published in Issue Year 2020 Volume: 33 Issue: 4

Cite

APA Oseni, B., & Okasha, H. (2020). Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science, 33(4), 925-941. https://doi.org/10.35378/gujs.607974
AMA Oseni B, Okasha H. Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science. December 2020;33(4):925-941. doi:10.35378/gujs.607974
Chicago Oseni, Bamidele, and Hassan Okasha. “Gumbel-Geometric Distribution: Properties and Applications”. Gazi University Journal of Science 33, no. 4 (December 2020): 925-41. https://doi.org/10.35378/gujs.607974.
EndNote Oseni B, Okasha H (December 1, 2020) Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science 33 4 925–941.
IEEE B. Oseni and H. Okasha, “Gumbel-Geometric Distribution: Properties and Applications”, Gazi University Journal of Science, vol. 33, no. 4, pp. 925–941, 2020, doi: 10.35378/gujs.607974.
ISNAD Oseni, Bamidele - Okasha, Hassan. “Gumbel-Geometric Distribution: Properties and Applications”. Gazi University Journal of Science 33/4 (December 2020), 925-941. https://doi.org/10.35378/gujs.607974.
JAMA Oseni B, Okasha H. Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science. 2020;33:925–941.
MLA Oseni, Bamidele and Hassan Okasha. “Gumbel-Geometric Distribution: Properties and Applications”. Gazi University Journal of Science, vol. 33, no. 4, 2020, pp. 925-41, doi:10.35378/gujs.607974.
Vancouver Oseni B, Okasha H. Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science. 2020;33(4):925-41.