Research Article
BibTex RIS Cite

Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies

Year 2020, Volume: 33 Issue: 4, 702 - 717, 01.12.2020
https://doi.org/10.35378/gujs.650923

Abstract

The source of pollution of both underground-water and water is the existence of heavy metals in such an environment. constitutes. This research sheds light on the lead (Pb) reactivity with Cadmium (Cd) throughout their transferal in the different soils. The batch technique was used in order to demonstrate the influence of temperature, initiate concentration, adsorption-isotherm. The consequences reveal that the Freundlich model, Langmuir model, Harkin-Jura model, and Halsey model are able to adequately describe the adsorption-isotherm parameter. The adsorption ability of the heavy metals decreased once temperatures increased. On the bases of the highest ability of adsorption (Qm), the order of affinity of Lead and Cadmium for the investigated soil occurred at Pb > Cd, and the maximum capacities of adsorption of competition of two cations are decreased for the same effective sites. The change in the thermodynamic state functions such as standard free-energy (ΔGo), standard entropy (ΔSo), and standard enthalpy (ΔHo) were investigated. The interaction of adsorption is revealed to be exothermic in nature

Supporting Institution

Basrah Technical Engineering College

Project Number

Petrochemical and Chemical Engineering

Thanks

To Basrah Technical Engineering College

References

  • [1] Demirbas A., Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157, 220, (2008).
  • [2] Bradl, H.B., Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci., 277, 1‒18, (2004).
  • [3] Siegel, F.R., Environmental Geochemistry of Potentially Toxic Heavy Metals; Springer: Berlin, Germany, (2002).
  • [4] Usman, A.R.A., The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144, 334–343, (2008).
  • [5] Kadirveluk., Thamaraiselvik., Namasi- Vayamc. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste., Bioresour. Technol. 76, 63, (2001).
  • [6] Shi W., Shao H., Li H., Shao M., Du S. Progress in the remediation of hazardous heavy metal-polluted soils by naural zeolite. J. Hazard. Mater. 170, 1,(2009).
  • [7] Vinodh R., Padma Vathi R., Sangeetha D. Separation of heavy metals from water samples using anion exchange polymers by adsorption process. Desalin. 267, 267, (2011).
  • [8] Loska K., Wiechula D., Korus I. Metal contamina- tion of farming soils affected by industry. Environ. Int. 30, 159, (2004).
  • [9] Zhao K., Liu X., Xu J., Selim H.M. Heavy metal cont- aminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard, Mater. 181, 778, (2010).
  • [10] BAI J., XIAO R., GONG A., GAO H., HUANG L. Assessment of heavy metal contamination of surface soils from typical paddy terrace wetlands on the Yunnan Plateau of China. Phys. Chem. Earth. 36, 447,( 2001).
  • [11] WEI B., YANG L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99, (2010).
  • [12] RAMACHANDRAN V., D’SOUZA T.J. Adsorption of cad- mium by Indian soils. Water Air Soil Pollut. 111, 225, (1999).
  • [13] YAYLALI-ABANUZ G. Heavy metal contamination of sur- face soil around Gebze industrial area, Turkey. Microchem.J. 99, 82,( 2011).
  • [14] GUZEL F., YAKUT H., TOPAL G. Determination of kinet- ic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J. Hazard. Mater. 153, 1275, (2008).
  • [15] Dube A., Zbytniewski R., Kowalkowski T., Cukrowska E., Buszewski B. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud. 101, (2001).
  • [16] S EPA, 1992. Common chemicals found at Superfund sites. US Government Printing Office, Washington, DC. EPA 540/R-94/044.
  • [17] Tiller, K.G., Gerth, J., Brummer, G., 1984. The sorption of Cd, Zn, and Ni by soil clay fractions: procedures for partition of bound forms and their inter- pretation. Geoderma 31, 1e16.
  • [18] Qin, F.; Wen, B.; Shan, X.-Q.; Xie, Y.-N.; Liu, T.; Zhang, S.-Z.; Khan, S.U. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut., 144, 669–680, 2006.
  • [19] Meena A.K., Mishra G.K., Raip .K., Rajagopal C., Nagarr P.N. Removal of heavy metal on from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. B122, 161, (2005).
  • [20] Antoniadis, V.; Tsadilas, C.D.; Ashworth, D.J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere, 68, 489–494 , (2007).
  • [21[ Angus J. Beek, and Kevin C. Jones, Chemosphere,32(12):2345-2358,(1996).
  • [22] Sanchez M. E., Mendez R., Gomez X., and Martin V. J., J. Liqu. Chrom. Rel. Techn., 26(3):483- 497, (2003).
  • [23] Gufrin A., Mohd. N. Suratman, and Nurun N. Md Isa,Sci. Direct 9:75-81.(2014).
  • [24[ Hamaker, J. W., and Thompson, J. M., Adsorption. Organic Chemicals in the soil Environment (C. A. 1. Goring and J. W. Hamaker, eds.), pp. 49-144. Marce1 Dekker 1nc, New York. (1972).
  • [25] Aekseeva T., Besse P., Binet F., Delort A-M., Forano C., and Sancelme M., 2004, App. Environ. Micro., 49:582-587. (2004).
  • [26] Piccolo, A. and Celano, G., Envirin.l Tox. Chem., 13:1737-1741.(1994).
  • [27] Adsorption Behavior of Heavy Metals on Various Soils, Noppadol Sangiumsak1, Pongsakorn Punrattanasin, Pol. J. Environ. Stud. Vol. 23, No. 3, 853-865, (2014).
  • [28] Ijagbemi C.O., Baek M.H., Kim D.S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 166, 538, (2009).
  • [29] Marcelo Kogan, Alejandia Metz and Rodrigo Ortega., "Adsorption of glyphosate in chile can and its relationship with unoccupied phosphaste binding sites". Pesqagropes bras. Brasilia., vol 38(4) 513-519, (2003).
  • [30] Jiang M., Jin X., Lu X.Q., Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II)onto natural kaolinite clay. Desalin. 252, 33, (2010).
  • [31] Bulu Y., Tez Z. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 19, 160, (2007).
  • [32] Aydin H., Bulut Y., Yerlikaya C. Removal of cop- per (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87, 37, (2008).
  • [33] Meena A.K., Kadirvelu K., Mishra G.K., Rajagopal C., Nagar P.N. Adsorption removal of heavy metals from aqueous solution by treated sawdust (Acacia Arabica). J. Hazard. Mater. 150, 604, (2008).
  • [34] Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics Muhammad Tahir Amin, Abdulrahman Ali Alazba and Muhammad Shafiq, Sustainability, 7, 15302-15318; doi:10.3390 /su71115302, (2015).
  • [35] F. Konstantinos, D. Garyfallia and R. Nikolaos, Headspace Solid-Phase Microextraction for the Gas Chromatographic Analysis of Organophosphorus Insecticides in Vegetables, J. AOAC Int., 90, 1677- 1681 (2007).
  • [36] Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci., 332, 46–53, (2009).
  • [37] Tahir, H.; Hammed, U.; Sultan, M.; Jahanzeb, Q. Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr. J. Biotechnol., 9, 8206–8214, (2010).
  • [38] Adsorption of 2, 4-dichlorophenozy acetic acid on to date seeds activeatead carbon: equilibrium, kinetic and thermodynamic studies, jassim M. salman and khalid A. AL-saad, Int. J. Chem. Sci.: 10(2), 677-690, (2012).
  • [39] V. K. Gupta, I. Ali and V. K. Saini, Adsorption of 2, 4-D and Carbofuran Pesticides using Fertilizer and Steel Industry Wastes, J. Colloid and Interface Sci., 299, 556- 563, (2006).
  • [40] R. Calvet, Adsorption of organic-chemicals in soils, Environ. Health Persp. 8,145–177, (1989).
  • [41] J.W. Biggar, M.W. Cheung, Adsorption of picloram (4-amino- 3,5,6-trichloropicolinic acid) on Panoche, Ephrata, and Palouse soils—thermodynamic approach to adsorption mechanism, Soil Sci. Soc. Am. J. 37, 863–868, (1973).
  • [42] M. Barkat, D. Nibou, S. Chearouche, A. Mellah, Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions, Chem. Eng. Process. 48, 38–47, (2009).
Year 2020, Volume: 33 Issue: 4, 702 - 717, 01.12.2020
https://doi.org/10.35378/gujs.650923

Abstract

Project Number

Petrochemical and Chemical Engineering

References

  • [1] Demirbas A., Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157, 220, (2008).
  • [2] Bradl, H.B., Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci., 277, 1‒18, (2004).
  • [3] Siegel, F.R., Environmental Geochemistry of Potentially Toxic Heavy Metals; Springer: Berlin, Germany, (2002).
  • [4] Usman, A.R.A., The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144, 334–343, (2008).
  • [5] Kadirveluk., Thamaraiselvik., Namasi- Vayamc. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste., Bioresour. Technol. 76, 63, (2001).
  • [6] Shi W., Shao H., Li H., Shao M., Du S. Progress in the remediation of hazardous heavy metal-polluted soils by naural zeolite. J. Hazard. Mater. 170, 1,(2009).
  • [7] Vinodh R., Padma Vathi R., Sangeetha D. Separation of heavy metals from water samples using anion exchange polymers by adsorption process. Desalin. 267, 267, (2011).
  • [8] Loska K., Wiechula D., Korus I. Metal contamina- tion of farming soils affected by industry. Environ. Int. 30, 159, (2004).
  • [9] Zhao K., Liu X., Xu J., Selim H.M. Heavy metal cont- aminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard, Mater. 181, 778, (2010).
  • [10] BAI J., XIAO R., GONG A., GAO H., HUANG L. Assessment of heavy metal contamination of surface soils from typical paddy terrace wetlands on the Yunnan Plateau of China. Phys. Chem. Earth. 36, 447,( 2001).
  • [11] WEI B., YANG L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99, (2010).
  • [12] RAMACHANDRAN V., D’SOUZA T.J. Adsorption of cad- mium by Indian soils. Water Air Soil Pollut. 111, 225, (1999).
  • [13] YAYLALI-ABANUZ G. Heavy metal contamination of sur- face soil around Gebze industrial area, Turkey. Microchem.J. 99, 82,( 2011).
  • [14] GUZEL F., YAKUT H., TOPAL G. Determination of kinet- ic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J. Hazard. Mater. 153, 1275, (2008).
  • [15] Dube A., Zbytniewski R., Kowalkowski T., Cukrowska E., Buszewski B. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud. 101, (2001).
  • [16] S EPA, 1992. Common chemicals found at Superfund sites. US Government Printing Office, Washington, DC. EPA 540/R-94/044.
  • [17] Tiller, K.G., Gerth, J., Brummer, G., 1984. The sorption of Cd, Zn, and Ni by soil clay fractions: procedures for partition of bound forms and their inter- pretation. Geoderma 31, 1e16.
  • [18] Qin, F.; Wen, B.; Shan, X.-Q.; Xie, Y.-N.; Liu, T.; Zhang, S.-Z.; Khan, S.U. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut., 144, 669–680, 2006.
  • [19] Meena A.K., Mishra G.K., Raip .K., Rajagopal C., Nagarr P.N. Removal of heavy metal on from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. B122, 161, (2005).
  • [20] Antoniadis, V.; Tsadilas, C.D.; Ashworth, D.J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere, 68, 489–494 , (2007).
  • [21[ Angus J. Beek, and Kevin C. Jones, Chemosphere,32(12):2345-2358,(1996).
  • [22] Sanchez M. E., Mendez R., Gomez X., and Martin V. J., J. Liqu. Chrom. Rel. Techn., 26(3):483- 497, (2003).
  • [23] Gufrin A., Mohd. N. Suratman, and Nurun N. Md Isa,Sci. Direct 9:75-81.(2014).
  • [24[ Hamaker, J. W., and Thompson, J. M., Adsorption. Organic Chemicals in the soil Environment (C. A. 1. Goring and J. W. Hamaker, eds.), pp. 49-144. Marce1 Dekker 1nc, New York. (1972).
  • [25] Aekseeva T., Besse P., Binet F., Delort A-M., Forano C., and Sancelme M., 2004, App. Environ. Micro., 49:582-587. (2004).
  • [26] Piccolo, A. and Celano, G., Envirin.l Tox. Chem., 13:1737-1741.(1994).
  • [27] Adsorption Behavior of Heavy Metals on Various Soils, Noppadol Sangiumsak1, Pongsakorn Punrattanasin, Pol. J. Environ. Stud. Vol. 23, No. 3, 853-865, (2014).
  • [28] Ijagbemi C.O., Baek M.H., Kim D.S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 166, 538, (2009).
  • [29] Marcelo Kogan, Alejandia Metz and Rodrigo Ortega., "Adsorption of glyphosate in chile can and its relationship with unoccupied phosphaste binding sites". Pesqagropes bras. Brasilia., vol 38(4) 513-519, (2003).
  • [30] Jiang M., Jin X., Lu X.Q., Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II)onto natural kaolinite clay. Desalin. 252, 33, (2010).
  • [31] Bulu Y., Tez Z. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 19, 160, (2007).
  • [32] Aydin H., Bulut Y., Yerlikaya C. Removal of cop- per (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87, 37, (2008).
  • [33] Meena A.K., Kadirvelu K., Mishra G.K., Rajagopal C., Nagar P.N. Adsorption removal of heavy metals from aqueous solution by treated sawdust (Acacia Arabica). J. Hazard. Mater. 150, 604, (2008).
  • [34] Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics Muhammad Tahir Amin, Abdulrahman Ali Alazba and Muhammad Shafiq, Sustainability, 7, 15302-15318; doi:10.3390 /su71115302, (2015).
  • [35] F. Konstantinos, D. Garyfallia and R. Nikolaos, Headspace Solid-Phase Microextraction for the Gas Chromatographic Analysis of Organophosphorus Insecticides in Vegetables, J. AOAC Int., 90, 1677- 1681 (2007).
  • [36] Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci., 332, 46–53, (2009).
  • [37] Tahir, H.; Hammed, U.; Sultan, M.; Jahanzeb, Q. Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr. J. Biotechnol., 9, 8206–8214, (2010).
  • [38] Adsorption of 2, 4-dichlorophenozy acetic acid on to date seeds activeatead carbon: equilibrium, kinetic and thermodynamic studies, jassim M. salman and khalid A. AL-saad, Int. J. Chem. Sci.: 10(2), 677-690, (2012).
  • [39] V. K. Gupta, I. Ali and V. K. Saini, Adsorption of 2, 4-D and Carbofuran Pesticides using Fertilizer and Steel Industry Wastes, J. Colloid and Interface Sci., 299, 556- 563, (2006).
  • [40] R. Calvet, Adsorption of organic-chemicals in soils, Environ. Health Persp. 8,145–177, (1989).
  • [41] J.W. Biggar, M.W. Cheung, Adsorption of picloram (4-amino- 3,5,6-trichloropicolinic acid) on Panoche, Ephrata, and Palouse soils—thermodynamic approach to adsorption mechanism, Soil Sci. Soc. Am. J. 37, 863–868, (1973).
  • [42] M. Barkat, D. Nibou, S. Chearouche, A. Mellah, Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions, Chem. Eng. Process. 48, 38–47, (2009).
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Layla Almalıke This is me

Akram Al-asadi 0000-0002-6261-9373

Abdulrazzaq Abdullah This is me 0000-0001-7215-3098

Project Number Petrochemical and Chemical Engineering
Publication Date December 1, 2020
Published in Issue Year 2020 Volume: 33 Issue: 4

Cite

APA Almalıke, L., Al-asadi, A., & Abdullah, A. (2020). Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies. Gazi University Journal of Science, 33(4), 702-717. https://doi.org/10.35378/gujs.650923
AMA Almalıke L, Al-asadi A, Abdullah A. Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies. Gazi University Journal of Science. December 2020;33(4):702-717. doi:10.35378/gujs.650923
Chicago Almalıke, Layla, Akram Al-asadi, and Abdulrazzaq Abdullah. “Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies”. Gazi University Journal of Science 33, no. 4 (December 2020): 702-17. https://doi.org/10.35378/gujs.650923.
EndNote Almalıke L, Al-asadi A, Abdullah A (December 1, 2020) Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies. Gazi University Journal of Science 33 4 702–717.
IEEE L. Almalıke, A. Al-asadi, and A. Abdullah, “Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies”, Gazi University Journal of Science, vol. 33, no. 4, pp. 702–717, 2020, doi: 10.35378/gujs.650923.
ISNAD Almalıke, Layla et al. “Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies”. Gazi University Journal of Science 33/4 (December 2020), 702-717. https://doi.org/10.35378/gujs.650923.
JAMA Almalıke L, Al-asadi A, Abdullah A. Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies. Gazi University Journal of Science. 2020;33:702–717.
MLA Almalıke, Layla et al. “Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies”. Gazi University Journal of Science, vol. 33, no. 4, 2020, pp. 702-17, doi:10.35378/gujs.650923.
Vancouver Almalıke L, Al-asadi A, Abdullah A. Adsorption of Lead and Cadmium Ions onto Soils: Isotherm Models, and Thermodynamic Studies. Gazi University Journal of Science. 2020;33(4):702-17.