Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 2, 423 - 437, 01.06.2021
https://doi.org/10.35378/gujs.734895

Abstract

References

  • [1] Global Wind Report-2019. GWEC, Global Wind Energy Council, (2019).
  • [2] Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D., Depalacio-Rodríguez, C., “Offshore wind energy: A review of the current status, challenges and future development in Spain”, Renewable and Sustainable Energy Reviews, 64: 1-18, (2016).
  • [3] Rodrigues, S., Bauer, P., Bosman, P.A.N., “Multi-objective optimization of wind farm layouts– Complexity, constraint handling and scalability”, Renewable and Sustainable Energy Reviews, 65: 587-609, (2016).
  • [4] Schallenberg-Rodríguez, J., García Montesdeoca, N., “Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands”, Energy, 143: 91-103, (2018).
  • [5] Chancham, C., Waewsak, J., Gagnon, Y., “Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand”, Energy, 139: 706-731, (2017).
  • [6] Al-Nassar, W.K., Neelamani, S., Al-Salem, K.A., Al-Dashti, H.A., “Feasibility of offshore wind energy as an alternative source for the state of Kuwait”, Energy, 169: 783-796, (2019).
  • [7] Kim, J.Y., Oh, K.Y., Kim, M.S., Kim, K.Y., “Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar”, Renewable Energy, 41-55, (2019).
  • [8] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A., “Wind energy potential at coastal and offshore locations in the state of Kuwait”, Renewable Energy, 529-539, (2019).
  • [9] Oh, K.Y., Nam, W., Ryu, M.S., Kim, J.Y., Epureanu, B.I., “A review of foundations of offshore wind energy convertors: Current status and future perspectives”, Renewable and Sustainable Energy Reviews, 88: 16-36, (2018).
  • [10] Al-Nassar, W., Alhajraf, S., Al-Enizi, A., Al-Awadhi, L., “Potential wind power generation in the State of Kuwait”, Renewable Energy, 30(14): 2149-2161, (2005).
  • [11] Wang, Y.H., Walter, R.K., White, C., Farr, H., Ruttenberg, B.I., “Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast”, Renewable Energy, 343-353, (2019).
  • [12] Neelamani, S., Al-Awadi, L., Al-Shatti, F., Al-Khaldi, M., Abdullah, M., Hussain, M., “Extreme wind and gust speed at the territorial waters of Kuwait, Arabian Gulf”, Wind Engineering, 38(1): 39-72, (2014).
  • [13] Kim, J.Y., Oh, K.Y., Kang, K.S., Lee, J.S., “Site selection of offshore wind farms around the Korean Peninsula through economic evaluation”, Renewable Energy, 54: 189-195, (2013).
  • [14] http://www.enerji.gov.tr/en-US/Pages/Electricity. Access date 30.04.2020.
  • [15] Yazicioglu, H., Tunc, K.M.M., Ozbek, M., Kara, T., “Simulation of electricity generation by marine current turbines at Istanbul Bosphorus Strait”, Energy, 95:41-50, (2016).
  • [16] Cali, U., Erdogan, N., Kucuksari, S., Argin, M., “Techno-Economic analysis of high potential offshore wind farm locations in Turkey”, Energy Strategy Reviews, 22: 325-336, (2018).
  • [17] Satir, M., Murphy, F., McDonnell, K., “Feasibility study of an offshore wind farm in the Aegean Sea, Turkey”, Renewable and Sustainable Energy Reviews, 81: 2552-2562, (2018).
  • [18] Kaplan, Y.A., “Overview of wind energy in the world and assessment of current wind energy policies in Turkey”, Renewable and Sustainable Energy Reviews, 43: 562-568, (2015).
  • [19] Ucar, A., Balo, F., “Assessment of wind power potential for turbine installation in coastal areas of Turkey”, Renewable and Sustainable Energy Reviews, 14: 1901-1912, (2010).
  • [20] Argin, M., Yerci, V., “Offshore wind power potential of the Black Sea region in Turkey”, International Journal of Green Energy, 14: 811-818, (2017).
  • [21] http://www.yegm.gov.tr/YEKrepa/REPA-duyuru_01.html. Access date 30.04.2020.
  • [22] https://www.google.com/earth/. Access date 30.04.2020.
  • [23] https://www.gebco.net/. Access date 30.04.2020.
  • [24] Troen, I., Lundtang, Petersen E., “European Wind Atlas”, Risø National Laboratory, Roskilde, (1989).
  • [25] Hahmann, A.N., Lennard, C., Badger, J., Vincent, C.L., Kelly, M.C., Volker, P.J.H., Argent, B., Refslund, J., “Mesoscale modeling for the Wind Atlas of South Africa (WASA) project”, DTU Wind Energy. DTU Wind Energy E, No. 0050 (updated), (2015).
  • [26] Lundtang Petersen, E., Mortensen, N.G., Landberg, L., Højstrup, J., Frank, H.P., “Wind Power Meteorology”, Risø National Laboratory. Risø-I No. 1206(EN), Roskilde, (1997).
  • [27] Mortensen, N.G., Landberg, L., Troen, I., Lundtang Petersen, E., Rathmann, O., Nielsen, M., “Wind Atlas Analysis and Application program (WAsP): Vol. 3: Utility programs”, (4th Ed.) Risø National Laboratory. Risø-I, No. 666(v.3)(EN), Roskilde, (1999).
  • [28] Ott, S., Berg, J., Nielsen, M., “Linearised CFD Models for Wakes”, Danmarks Tekniske Universitet, Risø National Laboratory. Risoe-R, No. 1772(EN), Roskilde, (2011).
  • [29] https://gmao.gsfc.nasa.gov/reanalysis/MERRA/. Access date 30.04.2020.
  • [30] Gumbel, E.J., Mustafi, C.K., “Some Analytical Properties of Bivariate Extremal Distributions”, Journal of the American Statistical Association, 62(318): 569-588, (1967).
  • [31] https://deepresource.wordpress.com/2018/09/01/offshore-wind-capacity-factors/. Access date 30.04.2020.

Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea

Year 2021, Volume: 34 Issue: 2, 423 - 437, 01.06.2021
https://doi.org/10.35378/gujs.734895

Abstract

This work aims to investigate the feasibility of offshore wind energy in Turkey by performing extensive simulations and analyses for a 50-90 MW capacity offshore wind park to be constructed at the Gulf of Edremit, a very high potential site located at the Aegean Sea, 3 km from the west coastline of Turkey. The location and layout of the farm is optimized by considering the sea depth data obtained from bathymetric maps and wind speed measurements acquired from the MERRA data and local met mast. Dynamic interactions among the turbines and the resulting wake losses are modeled by using two different site assessment programs. Capacity factors and the annual energy production yields are calculated for 8 different types of turbines with rated powers changing between 2 and 3.6 MW.

References

  • [1] Global Wind Report-2019. GWEC, Global Wind Energy Council, (2019).
  • [2] Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D., Depalacio-Rodríguez, C., “Offshore wind energy: A review of the current status, challenges and future development in Spain”, Renewable and Sustainable Energy Reviews, 64: 1-18, (2016).
  • [3] Rodrigues, S., Bauer, P., Bosman, P.A.N., “Multi-objective optimization of wind farm layouts– Complexity, constraint handling and scalability”, Renewable and Sustainable Energy Reviews, 65: 587-609, (2016).
  • [4] Schallenberg-Rodríguez, J., García Montesdeoca, N., “Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands”, Energy, 143: 91-103, (2018).
  • [5] Chancham, C., Waewsak, J., Gagnon, Y., “Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand”, Energy, 139: 706-731, (2017).
  • [6] Al-Nassar, W.K., Neelamani, S., Al-Salem, K.A., Al-Dashti, H.A., “Feasibility of offshore wind energy as an alternative source for the state of Kuwait”, Energy, 169: 783-796, (2019).
  • [7] Kim, J.Y., Oh, K.Y., Kim, M.S., Kim, K.Y., “Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar”, Renewable Energy, 41-55, (2019).
  • [8] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A., “Wind energy potential at coastal and offshore locations in the state of Kuwait”, Renewable Energy, 529-539, (2019).
  • [9] Oh, K.Y., Nam, W., Ryu, M.S., Kim, J.Y., Epureanu, B.I., “A review of foundations of offshore wind energy convertors: Current status and future perspectives”, Renewable and Sustainable Energy Reviews, 88: 16-36, (2018).
  • [10] Al-Nassar, W., Alhajraf, S., Al-Enizi, A., Al-Awadhi, L., “Potential wind power generation in the State of Kuwait”, Renewable Energy, 30(14): 2149-2161, (2005).
  • [11] Wang, Y.H., Walter, R.K., White, C., Farr, H., Ruttenberg, B.I., “Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast”, Renewable Energy, 343-353, (2019).
  • [12] Neelamani, S., Al-Awadi, L., Al-Shatti, F., Al-Khaldi, M., Abdullah, M., Hussain, M., “Extreme wind and gust speed at the territorial waters of Kuwait, Arabian Gulf”, Wind Engineering, 38(1): 39-72, (2014).
  • [13] Kim, J.Y., Oh, K.Y., Kang, K.S., Lee, J.S., “Site selection of offshore wind farms around the Korean Peninsula through economic evaluation”, Renewable Energy, 54: 189-195, (2013).
  • [14] http://www.enerji.gov.tr/en-US/Pages/Electricity. Access date 30.04.2020.
  • [15] Yazicioglu, H., Tunc, K.M.M., Ozbek, M., Kara, T., “Simulation of electricity generation by marine current turbines at Istanbul Bosphorus Strait”, Energy, 95:41-50, (2016).
  • [16] Cali, U., Erdogan, N., Kucuksari, S., Argin, M., “Techno-Economic analysis of high potential offshore wind farm locations in Turkey”, Energy Strategy Reviews, 22: 325-336, (2018).
  • [17] Satir, M., Murphy, F., McDonnell, K., “Feasibility study of an offshore wind farm in the Aegean Sea, Turkey”, Renewable and Sustainable Energy Reviews, 81: 2552-2562, (2018).
  • [18] Kaplan, Y.A., “Overview of wind energy in the world and assessment of current wind energy policies in Turkey”, Renewable and Sustainable Energy Reviews, 43: 562-568, (2015).
  • [19] Ucar, A., Balo, F., “Assessment of wind power potential for turbine installation in coastal areas of Turkey”, Renewable and Sustainable Energy Reviews, 14: 1901-1912, (2010).
  • [20] Argin, M., Yerci, V., “Offshore wind power potential of the Black Sea region in Turkey”, International Journal of Green Energy, 14: 811-818, (2017).
  • [21] http://www.yegm.gov.tr/YEKrepa/REPA-duyuru_01.html. Access date 30.04.2020.
  • [22] https://www.google.com/earth/. Access date 30.04.2020.
  • [23] https://www.gebco.net/. Access date 30.04.2020.
  • [24] Troen, I., Lundtang, Petersen E., “European Wind Atlas”, Risø National Laboratory, Roskilde, (1989).
  • [25] Hahmann, A.N., Lennard, C., Badger, J., Vincent, C.L., Kelly, M.C., Volker, P.J.H., Argent, B., Refslund, J., “Mesoscale modeling for the Wind Atlas of South Africa (WASA) project”, DTU Wind Energy. DTU Wind Energy E, No. 0050 (updated), (2015).
  • [26] Lundtang Petersen, E., Mortensen, N.G., Landberg, L., Højstrup, J., Frank, H.P., “Wind Power Meteorology”, Risø National Laboratory. Risø-I No. 1206(EN), Roskilde, (1997).
  • [27] Mortensen, N.G., Landberg, L., Troen, I., Lundtang Petersen, E., Rathmann, O., Nielsen, M., “Wind Atlas Analysis and Application program (WAsP): Vol. 3: Utility programs”, (4th Ed.) Risø National Laboratory. Risø-I, No. 666(v.3)(EN), Roskilde, (1999).
  • [28] Ott, S., Berg, J., Nielsen, M., “Linearised CFD Models for Wakes”, Danmarks Tekniske Universitet, Risø National Laboratory. Risoe-R, No. 1772(EN), Roskilde, (2011).
  • [29] https://gmao.gsfc.nasa.gov/reanalysis/MERRA/. Access date 30.04.2020.
  • [30] Gumbel, E.J., Mustafi, C.K., “Some Analytical Properties of Bivariate Extremal Distributions”, Journal of the American Statistical Association, 62(318): 569-588, (1967).
  • [31] https://deepresource.wordpress.com/2018/09/01/offshore-wind-capacity-factors/. Access date 30.04.2020.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Civil Engineering
Authors

Muammer Özbek 0000-0002-1161-0512

Kerim Tunç This is me 0000-0003-1387-0956

Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 2

Cite

APA Özbek, M., & Tunç, K. (2021). Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea. Gazi University Journal of Science, 34(2), 423-437. https://doi.org/10.35378/gujs.734895
AMA Özbek M, Tunç K. Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea. Gazi University Journal of Science. June 2021;34(2):423-437. doi:10.35378/gujs.734895
Chicago Özbek, Muammer, and Kerim Tunç. “Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea”. Gazi University Journal of Science 34, no. 2 (June 2021): 423-37. https://doi.org/10.35378/gujs.734895.
EndNote Özbek M, Tunç K (June 1, 2021) Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea. Gazi University Journal of Science 34 2 423–437.
IEEE M. Özbek and K. Tunç, “Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea”, Gazi University Journal of Science, vol. 34, no. 2, pp. 423–437, 2021, doi: 10.35378/gujs.734895.
ISNAD Özbek, Muammer - Tunç, Kerim. “Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea”. Gazi University Journal of Science 34/2 (June 2021), 423-437. https://doi.org/10.35378/gujs.734895.
JAMA Özbek M, Tunç K. Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea. Gazi University Journal of Science. 2021;34:423–437.
MLA Özbek, Muammer and Kerim Tunç. “Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea”. Gazi University Journal of Science, vol. 34, no. 2, 2021, pp. 423-37, doi:10.35378/gujs.734895.
Vancouver Özbek M, Tunç K. Feasibility of Offshore Wind Energy in Turkey; A Case Study for Gulf of Edremit at the Aegean Sea. Gazi University Journal of Science. 2021;34(2):423-37.