Research Article
BibTex RIS Cite

Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres

Year 2021, Volume: 34 Issue: 2, 355 - 368, 01.06.2021
https://doi.org/10.35378/gujs.737055

Abstract

In this study, Thermogravimetric Analyzer coupled with Fourier Transform Infrared Spectroscopy (TGA-FTIR) was used for the determination of the thermochemical conversion reactivity of two different types of Turkish lignite coal (Tunçbilek and Orhaneli-Gümüşpınar) and poppy capsule pulp (PCP) mixtures under pyrolysis conditions at nitrogen (N2) and carbon dioxide (CO2) atmospheres. Activation energies (Ea) and pre-exponential factors (A) were determined according to Coats-Redfern method and first-order reaction model. In CO2 atmosphere, all samples exhibited an extra weight loss around 800 - 850 ° C, different from the N2 atmosphere, due to the reactive nature of CO2 during thermal decomposition. FTIR analysis confirmed this finding, at high temperatures CO formation were observed in the CO2 atmosphere. In all mixtures, the third zone experimental decomposition temperature is lower than that obtained theoretically in N2 atmosphere, showing that there might a synergistic interaction between the PCP and the lignite samples. The Ea of PCP/Tunçbilek lignite mixtures are smaller than the Ea of their parent components indicating synergy in N2 and CO2 atmospheres. However, initial and maximum decomposition temperatures for the parent components remain unchanged for these mixtures. Moreover, especially at temperatures higher than 600 °C, the Ea for biomass/lignite mixtures found lower than the theoretical values, due to the possible synergistic interactions between PCP and coal samples. According to FTIR analysis, CO, CH4, CHn and ether/amine components were detected. Gaseous pyrolysis product compositions were highly dependent on temperature, and gas species formation was consistent with the weight loss of samples.

Supporting Institution

The Presidency of the Republic of Turkey, Strategy and Budget Directorate

Project Number

Advanced Coal Conversion Technologies (2016K121340)

References

  • BP Energy Outlook, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2017.pdf (2017).
  • Survey of Energy Resources, World Energy Council Report, https://www.worldenergy.org/assets/downloads/ser_2010_report_1.pdf (2010).
  • Yao, D.D., Hu, Q., Wang, D.Q., Yang, H.P., Wu, C.F., Wang, X.H., Chen, H., “Hydrogen production from biomass gasification using biochar as a catalyst/support” Bioresource Technology, 216: 159–164, (2016).
  • Doğan, M., “Enerji Kaynakları Çevre Sorunları ve Çevre Dostu Alternatif Enerji Kaynakları” Standard Dergisi, 39(468): 28-36, (2000).
  • 2018 YILI HAŞHAŞ SEKTÖR RAPORU, Toprak Mahsülleri Ofisi, Ankara. http://www.tmo.gov.tr/Upload/Document/hashassektorraporu2018.pdf (2019).
  • Hopa, D. Y., Yılmaz, N., Alagöz, O., Dilek, M., Helvacı, A., Durupınar, Ü., “Pyrolysis of poppy capsule pulp for bio-oil production” Waste Management & Research, 34(12): 1316–1321, (2016).
  • Hopa, D. Y., Alagöz, O., Yilmaz, N., Dilek, M., Arabacı, G., Mutlu, T., “Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality” Waste Management & Research, 37(9): 925-933, (2019).
  • Wu, Z., Li, Y., Xu, D., Meng, H., “Co-pyrolysis of lignocellulosic biomass with low quality coal: Optimal design and synergistic effect from gaseous products distribution” Fuel, 236: 43-54, (2019).
  • Ulloa, C. A., Gordon, A. L., “Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust” Fuel Processing Society, 90: 583-590, (2009).
  • Vamvuka, D., Kakaras, E., Kastanaki, E., Grammelis, P., “Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite” Fuel, 82: 1949-1960, (2003).
  • Biagini, E., Lippi, F., Petarca, L., Tognotti, L., “Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation” Fuel, 81: 1041-1050, (2002).
  • Yuzbasi N.S., Selçuk, N., “Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR” Fuel Processing Technology, 92: 1101-1108, (2011).
  • Vuthaluru, H. B., “Thermal behaviour of coal/biomass blends during co-pyrolysis” Fuel Processing Technology, 85: 141-155, (2003).
  • Li S., Chen, X., Liu, A., Wang, L., Yu, G., “Co-pyrolysis characterictic of biomass and bituminous coal” Bioresource Technology, 179: 414-420, (2015).
  • Yang, F., Zhou, A., Zhao, W., Yang, Z., Li, H., “Thermochemical behaviors, kinetics and gas emission analyses during co-pyrolysis of walnut shell and coal” Thermochimica Acta, 673: 26-33, (2019).
  • Haykiri-Acma, H., Yaman, S., “Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis” Fuel, 86: 373-380, (2007).
  • Cho, S., Lee, J., Kim, K., Jeon, Y. J., Kwon, E. E.,”Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass” Energy Conversion and Management, 118: 243-252, (2016).
  • Rodilla, I., Contreras, M.L., Bahillo, A., “Thermogravimetric and mass spectrometric (TG-MS) analysis of sub-bituminous coal-energy crops blends in N2, air and CO2/O2 atmospheres” Fuel, 215: 506-514, (2018).
  • Irfan, M. F., Arami-Niya, A., Charakrabarti, M. H., Daud, W.M.A.W, Usman, M. R., “Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres” Energy, 37: 665-672, (2012).
  • Toptas, A., Yildirim, Y., Duman, G., Yanik, J., “Combustion behavior of different kinds of torrefied biomass and their blends with lignite” Bioresource Technology, 177: 328-336, (2015).
  • Coats, A.W., Redfern, J.P., “Kinetic parameters from thermogravimetric data” Nature, 201: 68-69, (1964).
  • Magalhaes, D., Kazanç, F., Riaza, J., Erensoy, S., Kabaklı, Ö., Chalmers, H., “Combustion of Turkish lignites and olive residue: experiments and kinetic modelling” Fuel, 203: 868-876, (2017).
  • Kök, M. V., “Coal pyrolysis: thermogravimetric study and kinetic analysis” Energy Sources, 25: 1007-1014, (2003).
  • Rosenvold, R. J., Dubow, J. B., “Thermal analysis of Ohio bituminous coals” Thermochimica Acta, 53: 321-332, (1982).
  • Haykiri-Acma, H., Yaman, S., “Interaction between biomass and different rank coals during co-pyrolysis” Renewable Energy, 35: 288-292, (2010).
  • Wang, J., Zhang, S., Guo, X., Dong, A., Chen, C., Xiong, S., Fang, Y., Yin, W., “Thermal behaviors and kinetics of Pingshuo coal/biomass blends during co-pyrolysis and co-combustion” Energy & Fuels, 26: 7120-7126, (2012).
  • Tang, Y., Ma, X., Wang, Z., Wu, Z., Yu, Q., “A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR” Thermochimica Acta, 657: 12-19, (2017).
  • Chen, J., Mu, L., Cai, J., Yao, P., Song, X., Yin, H., Li, A., “Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis” Bioresource Technology, 198: 115-123, (2015).
  • Lai, Z., Ma, X., Tang, Y., Lin, H., “Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres” Fuel Processing Technology, 102: 18-23, (2012).
  • Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z., “Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4, and H2 atmospheres” Bioresource Technology, 102: 4258-4264, (2011).
  • Wen S., Yan, Y., Liu, J, Buyukada, M., Evrendilek, F., “Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres” Renewable Energy, 141: 814-827, (2019).
  • Moliner, C., Bosio, B., Arato, E., Ribes, A., “Thermal and thermo-oxidative characterisation of rice straw for its use in energy valorisation processes” Fuel, 180: 71-79, (2016).
  • Jeong, H. M., Seo, M. W., Jeong, S. M., Na, B. K., Yoon, S. Y., Lee, J. G., Lee, W. J., “Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions” Bioresource Technology, 155: 442-445, (2014).
  • Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q., “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods” Energy Conversion and Management, 89: 251-259, (2015).
Year 2021, Volume: 34 Issue: 2, 355 - 368, 01.06.2021
https://doi.org/10.35378/gujs.737055

Abstract

Project Number

Advanced Coal Conversion Technologies (2016K121340)

References

  • BP Energy Outlook, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2017.pdf (2017).
  • Survey of Energy Resources, World Energy Council Report, https://www.worldenergy.org/assets/downloads/ser_2010_report_1.pdf (2010).
  • Yao, D.D., Hu, Q., Wang, D.Q., Yang, H.P., Wu, C.F., Wang, X.H., Chen, H., “Hydrogen production from biomass gasification using biochar as a catalyst/support” Bioresource Technology, 216: 159–164, (2016).
  • Doğan, M., “Enerji Kaynakları Çevre Sorunları ve Çevre Dostu Alternatif Enerji Kaynakları” Standard Dergisi, 39(468): 28-36, (2000).
  • 2018 YILI HAŞHAŞ SEKTÖR RAPORU, Toprak Mahsülleri Ofisi, Ankara. http://www.tmo.gov.tr/Upload/Document/hashassektorraporu2018.pdf (2019).
  • Hopa, D. Y., Yılmaz, N., Alagöz, O., Dilek, M., Helvacı, A., Durupınar, Ü., “Pyrolysis of poppy capsule pulp for bio-oil production” Waste Management & Research, 34(12): 1316–1321, (2016).
  • Hopa, D. Y., Alagöz, O., Yilmaz, N., Dilek, M., Arabacı, G., Mutlu, T., “Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality” Waste Management & Research, 37(9): 925-933, (2019).
  • Wu, Z., Li, Y., Xu, D., Meng, H., “Co-pyrolysis of lignocellulosic biomass with low quality coal: Optimal design and synergistic effect from gaseous products distribution” Fuel, 236: 43-54, (2019).
  • Ulloa, C. A., Gordon, A. L., “Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust” Fuel Processing Society, 90: 583-590, (2009).
  • Vamvuka, D., Kakaras, E., Kastanaki, E., Grammelis, P., “Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite” Fuel, 82: 1949-1960, (2003).
  • Biagini, E., Lippi, F., Petarca, L., Tognotti, L., “Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation” Fuel, 81: 1041-1050, (2002).
  • Yuzbasi N.S., Selçuk, N., “Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR” Fuel Processing Technology, 92: 1101-1108, (2011).
  • Vuthaluru, H. B., “Thermal behaviour of coal/biomass blends during co-pyrolysis” Fuel Processing Technology, 85: 141-155, (2003).
  • Li S., Chen, X., Liu, A., Wang, L., Yu, G., “Co-pyrolysis characterictic of biomass and bituminous coal” Bioresource Technology, 179: 414-420, (2015).
  • Yang, F., Zhou, A., Zhao, W., Yang, Z., Li, H., “Thermochemical behaviors, kinetics and gas emission analyses during co-pyrolysis of walnut shell and coal” Thermochimica Acta, 673: 26-33, (2019).
  • Haykiri-Acma, H., Yaman, S., “Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis” Fuel, 86: 373-380, (2007).
  • Cho, S., Lee, J., Kim, K., Jeon, Y. J., Kwon, E. E.,”Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass” Energy Conversion and Management, 118: 243-252, (2016).
  • Rodilla, I., Contreras, M.L., Bahillo, A., “Thermogravimetric and mass spectrometric (TG-MS) analysis of sub-bituminous coal-energy crops blends in N2, air and CO2/O2 atmospheres” Fuel, 215: 506-514, (2018).
  • Irfan, M. F., Arami-Niya, A., Charakrabarti, M. H., Daud, W.M.A.W, Usman, M. R., “Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres” Energy, 37: 665-672, (2012).
  • Toptas, A., Yildirim, Y., Duman, G., Yanik, J., “Combustion behavior of different kinds of torrefied biomass and their blends with lignite” Bioresource Technology, 177: 328-336, (2015).
  • Coats, A.W., Redfern, J.P., “Kinetic parameters from thermogravimetric data” Nature, 201: 68-69, (1964).
  • Magalhaes, D., Kazanç, F., Riaza, J., Erensoy, S., Kabaklı, Ö., Chalmers, H., “Combustion of Turkish lignites and olive residue: experiments and kinetic modelling” Fuel, 203: 868-876, (2017).
  • Kök, M. V., “Coal pyrolysis: thermogravimetric study and kinetic analysis” Energy Sources, 25: 1007-1014, (2003).
  • Rosenvold, R. J., Dubow, J. B., “Thermal analysis of Ohio bituminous coals” Thermochimica Acta, 53: 321-332, (1982).
  • Haykiri-Acma, H., Yaman, S., “Interaction between biomass and different rank coals during co-pyrolysis” Renewable Energy, 35: 288-292, (2010).
  • Wang, J., Zhang, S., Guo, X., Dong, A., Chen, C., Xiong, S., Fang, Y., Yin, W., “Thermal behaviors and kinetics of Pingshuo coal/biomass blends during co-pyrolysis and co-combustion” Energy & Fuels, 26: 7120-7126, (2012).
  • Tang, Y., Ma, X., Wang, Z., Wu, Z., Yu, Q., “A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR” Thermochimica Acta, 657: 12-19, (2017).
  • Chen, J., Mu, L., Cai, J., Yao, P., Song, X., Yin, H., Li, A., “Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis” Bioresource Technology, 198: 115-123, (2015).
  • Lai, Z., Ma, X., Tang, Y., Lin, H., “Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres” Fuel Processing Technology, 102: 18-23, (2012).
  • Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z., “Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4, and H2 atmospheres” Bioresource Technology, 102: 4258-4264, (2011).
  • Wen S., Yan, Y., Liu, J, Buyukada, M., Evrendilek, F., “Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres” Renewable Energy, 141: 814-827, (2019).
  • Moliner, C., Bosio, B., Arato, E., Ribes, A., “Thermal and thermo-oxidative characterisation of rice straw for its use in energy valorisation processes” Fuel, 180: 71-79, (2016).
  • Jeong, H. M., Seo, M. W., Jeong, S. M., Na, B. K., Yoon, S. Y., Lee, J. G., Lee, W. J., “Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions” Bioresource Technology, 155: 442-445, (2014).
  • Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q., “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods” Energy Conversion and Management, 89: 251-259, (2015).
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemical Engineering
Authors

Işıl Işık Gülsaç 0000-0002-2308-306X

Project Number Advanced Coal Conversion Technologies (2016K121340)
Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 2

Cite

APA Işık Gülsaç, I. (2021). Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science, 34(2), 355-368. https://doi.org/10.35378/gujs.737055
AMA Işık Gülsaç I. Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science. June 2021;34(2):355-368. doi:10.35378/gujs.737055
Chicago Işık Gülsaç, Işıl. “Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres”. Gazi University Journal of Science 34, no. 2 (June 2021): 355-68. https://doi.org/10.35378/gujs.737055.
EndNote Işık Gülsaç I (June 1, 2021) Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science 34 2 355–368.
IEEE I. Işık Gülsaç, “Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres”, Gazi University Journal of Science, vol. 34, no. 2, pp. 355–368, 2021, doi: 10.35378/gujs.737055.
ISNAD Işık Gülsaç, Işıl. “Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres”. Gazi University Journal of Science 34/2 (June 2021), 355-368. https://doi.org/10.35378/gujs.737055.
JAMA Işık Gülsaç I. Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science. 2021;34:355–368.
MLA Işık Gülsaç, Işıl. “Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres”. Gazi University Journal of Science, vol. 34, no. 2, 2021, pp. 355-68, doi:10.35378/gujs.737055.
Vancouver Işık Gülsaç I. Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science. 2021;34(2):355-68.