Research Article
BibTex RIS Cite

Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity

Year 2021, Volume: 34 Issue: 2, 311 - 325, 01.06.2021
https://doi.org/10.35378/gujs.751660

Abstract

Our country is home to many endemic plant species including medicinal, aromatic and spice. One of these species is thyme plant used both in daily life and for medical purposes. One of the most popular methods of phylogenetic classification of plants is the internal transcribed spacer (ITS) region which locates between the ITS1 and ITS2 regions that highly conserved. In this paper, a thyme species was used, which grows naturally in Sultan Murat Sarıkaya High-plateau in eastern Black Sea Region (Turkey) and phylogenetic analysis of oregano plant was carried out and antioxidant and antibacterial activity was investigated. The assessment of the antioxidant activity of the plant was researched using DPPH method using plant excretes prepared at various time intervals. The antibacterial activity of plant was studied by using disc diffusion and minimum inhibitory concentration (MIC) methods against Gram (+) and Gram (-) bacteria. The phylogenetic analysis was performed by obtaining the genomic DNA of the plant by the analysis of the specific DNA sequences used in the species identification, and the species of the plant was identified as Origanum vulgare and was identified as MH174928.1 (Origanum vulgare isolate SRY61) from Gen Bank. O. vulgare showed a high rate of antioxidant properties and showed antibacterial effect in accordance with the literature.

Supporting Institution

Istanbul Gelisim University, The Scientific Research Projects Application And Research Center, BAPUM

Project Number

YUP-080518-AÖ

Thanks

Department of Medical Microbiology, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University

References

  • [1] Elezi, F., Plaku, F., Ibraliu, A., Stefkov, G., Karapandzova, M., Kulevanova, S., Aliu, S., “Genetic variation of oregano (Origanum vulgare L.) for etheric oil in Albania”, Agricultural Sciences, 4(09): 449, (2013).
  • [2] Temel, M., Tokur, S., “Origanum vulgare L. (Lamiaceae) üç alttürünün korolojisi ve habitat özellikleri”, Journal of the Institute of Science & Technology of Dumlupinar University/Dumlupinar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 33: 53-64, (2014).
  • [3] Lemhadri, A., Zeggwagh, N. A., Maghrani, M., Jouad, H., Eddouks, M., “Anti-hyperglycaemic activity of the aqueous extract of Origanum vulgare growing wild in Tafilalet region”, Journal of ethnopharmacology, 92(2-3): 251-256, (2004).
  • [4] Lukas, B., Novak, J., “The complete chloroplast genome of Origanum vulgare L. (Lamiaceae)”, Gene, 528(2): 163-169, (2013).
  • [5] Baricevic, D., Bartol, T., “The biological/pharmacological activity of the Origanum genus”, Oregano, the genera Origanum and Lippia, New York: Taylor & Francis Inc, pp. 177-201, (2002).
  • [6] Rao, G. V., Mukhopadhyay, T., Annamalai, T., Radhakrishnan, N., Sahoo, M. R., “Chemical constituents and biological studies of Origanum vulgare Linn”, Pharmacognosy Research, 3(2): 143, (2011).
  • [7] Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., Chen, S., “Plant DNA barcoding: from gene to genome”, Biological Reviews, 90(1): 157-166, (2015).
  • [8] White, T. J., Bruns, T., Lee, S. J. W. T., Taylor, J., “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics”, PCR Protocols: A Guide to Methods and Applications, 18(1): 315-322, (1990).
  • [9] Alvarez, I., Wendel, J. F., “Ribosomal ITS sequences and plant phylogenetic inference”, Molecular Phylogenetics and Evolution, 29: 417-434, (2003).
  • [10] Hamby, R. K., Zimmer, E. A., “Ribosomal RNA as a phylogenetic tool in plant systematics”, In: Molecular systematics of plants, Springer, Boston, MA., pp. 50-91, (1992).
  • [11] Hillis, D. M., Dixon, M. T., “Ribosomal DNA: molecular evolution and phylogenetic inference”, The Quarterly Review of Biology, 66(4): 411-453, (1991).
  • [12] Jomova, K., Valko, M., “Advances in metal-induced oxidative stress and human disease”, Toxicology, 283(2-3): 65-87, (2011).
  • [13] Suntres, Z. E., “Role of antioxidants in paraquat toxicity”, Toxicology, 180(1): 65-77, (2002).
  • [14] Suntres, Z. E., “Liposomal antioxidants for protection against oxidant-induced damage”, Journal of Toxicology, 2011: 152474, (2011).
  • [15] Coccimiglio, J., Alipour, M., Jiang, Z. H., Gottardo, C., Suntres, Z., “Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents”, Oxidative Medicine and Cellular Longevity, 2016: 1404505, (2016).
  • [16] Verma, A. R., Vijayakumar, M., Rao, C. V., Mathela, C. S., “In vitro and in vivo antioxidant properties and DNA damage protective activity of green fruit of Ficus glomerata”, Food and Chemical Toxicology, 48(2): 704-709, (2010).
  • [17] Abdul, Q. M., Shahzadi, S. K., Bashir, A., Munir, A., Shahzad, S., “Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs”, International Journal of Analytical Chemistry, 2017: 1-7, (2017).
  • [18] Can, B. K. H., “Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils”, Current Pharmaceutical Design, 14(29): 3106-3119, (2008).
  • [19] Gould, I. M., “The epidemiology of antibiotic resistance”, International Journal of Antimicrobial Agents, 32: 2-9, (2008).
  • [20] Martínez, J. L., Rojo, F., Vila, J., “Are nonlethal targets useful for developing novel antimicrobials?”, Future Microbiology, 6(6): 605-607, (2011).
  • [21] Osbourn, A. E., “Preformed antimicrobial compounds and plant defense against fungal attack”, The Plant Cell, 8(10): 1821, (1996).
  • [22] Nash, R. J., Kato, A., Yu, C. Y., Fleet, G. W., “Iminosugars as therapeutic agents: recent advances and promising trends”, Future Medicinal Chemistry, 3(12): 1513-1521, (2011).
  • [23] Tagboto, S., Townson, S., “Antiparasitic properties of medicinal plants and other naturally occurring products”, Advances in Parasitology, 50: 199-295, (2001).
  • [24] Savoia, D., “Plant-derived antimicrobial compounds: alternatives to antibiotics”, Future Microbiology, 7(8): 979-990, (2012).
  • [25] Xi, Y., Sullivan, G. A., Jackson, A. L., Zhou, G. H., Sebranek, J. G., “Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system”, Meat Science, 88(3): 503-511, (2011).
  • [26] Martelli, G., Giacomini, D., “Antibacterial and antioxidant activities for natural and synthetic dual-active compounds”, European Journal of Medicinal Chemistry, 158: 91-105, (2018).
  • [27] Lambert, R. J. W., Skandamis, P. N., Coote, P. J., Nychas, G. J., “A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol”, Journal of Applied Microbiology, 91(3): 453-462, (2001).
  • [28] Ultee, A., Bennik, M. H. J., Moezelaar, R. J. A. E. M., “The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus”, Appl. Environ. Microbiol., 68(4): 1561-1568, (2002).
  • [29] Palaniappan, K., Holley, R. A., “Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria”, International Journal of Food Microbiology, 140(2-3): 164-168, (2010).
  • [30] Tamura, K., Nei, M., “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees”, Molecular Biology and Evolution, 10(3): 512-526, (1993).
  • [31] Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., “MEGA X: molecular evolutionary genetics analysis across computing platforms”, Molecular Biology and Evolution, 35(6): 1547-1549, (2018).
  • [32] Stecher, G., Tamura, K., Kumar, S., “Molecular evolutionary genetics analysis (MEGA) for macOS”, Molecular Biology and Evolution, 37(4): 1237-1239, (2020).
  • [33] Walker, J. B., Sytsma, K. J., “Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever”, Annals of Botany, 100(2): 375-391, (2007).
  • [34] Bräuchler, C., Meimberg, H., Heubl, G., “Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)-Taxonomy, biogeography and conflicts”, Molecular Phylogenetics and Evolution, 55(2): 501-523, (2010).
  • [35] Drew, B. T., Sytsma, K. J., “Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae)”, American journal of botany, 99(5): 933-953, (2012).
  • [36] Tung, Y. T., Wu, J. H., Kuo, Y. H., Chang, S. T., “Antioxidant activities of natural phenolic compounds from Acacia confusa bark”, Bioresource Technology, 98(5): 1120-1123, (2007).
  • [37] Brand-Williams, W., Cuvelier, M. E., Berset, C., “Use of a free radical method to evaluate antioxidant activity”, Food Science and Technology–Lebensmittel Wissenschaft und Technologie, 28: 25-30, (1995).
  • [38] AAT Bioquest, Inc.,“Quest Graph™ IC50 Calculator”, Retrieved from https://www.aatbio.com/tools/ic50-calculator, (2020).
  • [39] Russell, A. D., Furr, J. R., “The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid”, Journal of Applied Bacteriology, 43(2): 253-260, (1977).
  • [40] Irobi, O. N., Moo-Young, M., Anderson, W. A., Daramola, S. O., “Antimicrobial activity of bark extracts of Bridelia ferruginea (Euphorbiaceae)”, Journal of Ethnopharmacology, 43(3): 185-190, (1994).
  • [41] Clinical and Laboratory Standards Institute, “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard”, 9 th ed., CLSI document M07-A9, Wayne, 68, (2012).
  • [42] National Committee for Clinical Laboratory Standards, “Performance Standards for Antimicrobial Susceptibility Testing”, 12 th ed., Informational Supplement M100-S12, NCCLS, Wayne, PA, (2002).
  • [43] Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., Donoghue, M. J., “The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny”, Annals of the Missouri Botanical Garden, 82(2): 247-277, (1995).
  • [44] Poczai, P., Hyvönen, J., “Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects”, Molecular Biology Reports, 37(4): 1897-1912, (2010).
  • [45] Álvarez, I., Wendel, J. F., “Ribosomal ITS sequences and plant phylogenetic inference”, Molecular Phylogenetics and Evolution, 29(3): 417-434, (2003).
  • [46] Stecher, G., Tamura, K., Kumar, S., “Molecular evolutionary genetics analysis (MEGA) for macOS”, Molecular Biology and Evolution, 37(4): 1237-1239, (2020).
  • [47] Commoner, B., Townsend, J., Pake, G. E., “Free radicals in biological materials”, Nature, 174(4432): 689-691, (1954).
  • [48] Dupont, G. P., Huecksteadt, T. P., Marshall, B. C., Ryan, U. S., Michael, J. R., Hoidal, J. R., “Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells”, The Journal of Clinical İnvestigation, 89(1): 197-202, (1992).
  • [49] Rodriguez-Garcia, I., Silva-Espinoza, B. A., Ortega-Ramirez, L. A., Leyva, J. M., Siddiqui, M. W., Cruz-Valenzuela, M. R., Ayala-Zavala, J. F., “Oregano essential oil as an antimicrobial and antioxidant additive in food products”, Critical Reviews in Food Science and Nutrition, 56(10): 1717-1727, (2016).
  • [50] Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., Mittler, R., “Abiotic and biotic stress combinations”, New Phytologist, 203(1): 32-43, (2014).
  • [51] Chanda, S., Dave, R., “In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview”, African Journal of Microbiology Research, 3(13): 981-996, (2009).
  • [52] Michalak, A., “Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress”, Polish Journal of Environmental Studies, 15(4): 523-30, (2006).
  • [53] Winkel-Shirley, B., “Biosynthesis of flavonoids and effects of stress”, Current opinion in plant biology, 5(3): 218-223, (2002).
  • [54] Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez-Lefebre, L. R., Sánchez, E., Romero, L., “Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants”, Plant Science, 160(2): 315-321, (2001).
  • [55] Alam, M. N., Bristi, N. J., Rafiquzzaman, M., “Review on in vivo and in vitro methods evaluation of antioxidant activity”, Saudi Pharmaceutical Journal, 21(2): 143-152, (2013).
  • [56] Karadag, A., Ozcelik, B., Saner, S., “Review of methods to determine antioxidant capacities”, Food Analytical Methods, 2(1): 41-60, (2009).
  • [57] Prior, R. L., Wu, X., Schaich, K., “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements”, Journal of Agricultural and Food Chemistry, 53(10): 4290-4302, (2005).
  • [58] Dhanani, T., Shah, S., Gajbhiye, N. A., Kumar, S., “Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera”, Arabian Journal of Chemistry, 10: 1193-1199, (2017).
  • [59] Xu, D. P., Zhou, Y., Zheng, J., Li, S., Li, A. N., Li, H. B., “Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology”, Molecules, 21(1): 2-12, (2016).
  • [60] Shan, B., Cai, Y. Z., Sun, M., Corke, H., “Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents”, Journal of Agricultural and Food Chemistry, 53(20): 7749-7759, (2005).
  • [61] Choe, E., Min, D. B., “Mechanisms and factors for edible oil oxidation”, Comprehensive Reviews in Food Science and Food Safety, 5(4): 169-186, (2006).
  • [62] Mechergui, K., Coelho, J. A., Serra, M. C., Lamine, S. B., Boukhchina, S., Khouja, M. L., “Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.) Ietswaart from Tunisia: chemical composition and antioxidant activity”, Journal of the Science of Food and Agriculture, 90(10): 1745-1749, (2010).
  • [63] Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Trivic, S., “Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts”, Molecules, 16(9): 7401-7414, (2011).
  • [64] Han, F., Ma, G. Q., Yang, M., Yan, L., Xiong, W., Shu, J. C., Xu, H. L., “Chemical composition and antioxidant activities of essential oils from different parts of the oregano”, Journal of Zhejiang University-Science B, 18(1): 79-84, (2017).
  • [65] Stanojević, L. P., Stanojević, J. S., Cvetković, D. J., Ilić, D. P., “Antioxidant activity of oregano essential oil (Origanum vulgare L.)”, Biologica Nyssana, 7(2): 131-139, (2016).
  • [66] Burt, S. A., Reinders, R. D., “Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7”, Letters in Applied Microbiology”, 36(3): 162-167, (2003).
  • [67] Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., “Biological effects of essential oils–a review”, Food and Chemical Toxicology, 46(2): 446-475, (2008).
  • [68] De Vincenzi, M., Silano, M., Maialetti, F., Scazzocchio, B., “Constituents of aromatic plants: II. Estragole”, Fitoterapia, 71(6): 725-729, (2000).
  • [69] Santoyo, S., Cavero, S., Jaime, L., Ibanez, E., Senorans, F. J., Reglero, G., “Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters”, Journal of Food Protection, 69(2): 369-375, (2006).
  • [70] Brđanin, S., Bogdanović, N., Kolundžić, M., Milenković, M., Golić, N., Kojić, M., Kundaković, T., “Antimicrobial activity of oregano (Origanum vulgare L.): And basil (Ocimum basilicum L.): Extracts”, Advanced Technologies, 4(2): 5-10, (2015).
Year 2021, Volume: 34 Issue: 2, 311 - 325, 01.06.2021
https://doi.org/10.35378/gujs.751660

Abstract

Project Number

YUP-080518-AÖ

References

  • [1] Elezi, F., Plaku, F., Ibraliu, A., Stefkov, G., Karapandzova, M., Kulevanova, S., Aliu, S., “Genetic variation of oregano (Origanum vulgare L.) for etheric oil in Albania”, Agricultural Sciences, 4(09): 449, (2013).
  • [2] Temel, M., Tokur, S., “Origanum vulgare L. (Lamiaceae) üç alttürünün korolojisi ve habitat özellikleri”, Journal of the Institute of Science & Technology of Dumlupinar University/Dumlupinar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 33: 53-64, (2014).
  • [3] Lemhadri, A., Zeggwagh, N. A., Maghrani, M., Jouad, H., Eddouks, M., “Anti-hyperglycaemic activity of the aqueous extract of Origanum vulgare growing wild in Tafilalet region”, Journal of ethnopharmacology, 92(2-3): 251-256, (2004).
  • [4] Lukas, B., Novak, J., “The complete chloroplast genome of Origanum vulgare L. (Lamiaceae)”, Gene, 528(2): 163-169, (2013).
  • [5] Baricevic, D., Bartol, T., “The biological/pharmacological activity of the Origanum genus”, Oregano, the genera Origanum and Lippia, New York: Taylor & Francis Inc, pp. 177-201, (2002).
  • [6] Rao, G. V., Mukhopadhyay, T., Annamalai, T., Radhakrishnan, N., Sahoo, M. R., “Chemical constituents and biological studies of Origanum vulgare Linn”, Pharmacognosy Research, 3(2): 143, (2011).
  • [7] Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., Chen, S., “Plant DNA barcoding: from gene to genome”, Biological Reviews, 90(1): 157-166, (2015).
  • [8] White, T. J., Bruns, T., Lee, S. J. W. T., Taylor, J., “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics”, PCR Protocols: A Guide to Methods and Applications, 18(1): 315-322, (1990).
  • [9] Alvarez, I., Wendel, J. F., “Ribosomal ITS sequences and plant phylogenetic inference”, Molecular Phylogenetics and Evolution, 29: 417-434, (2003).
  • [10] Hamby, R. K., Zimmer, E. A., “Ribosomal RNA as a phylogenetic tool in plant systematics”, In: Molecular systematics of plants, Springer, Boston, MA., pp. 50-91, (1992).
  • [11] Hillis, D. M., Dixon, M. T., “Ribosomal DNA: molecular evolution and phylogenetic inference”, The Quarterly Review of Biology, 66(4): 411-453, (1991).
  • [12] Jomova, K., Valko, M., “Advances in metal-induced oxidative stress and human disease”, Toxicology, 283(2-3): 65-87, (2011).
  • [13] Suntres, Z. E., “Role of antioxidants in paraquat toxicity”, Toxicology, 180(1): 65-77, (2002).
  • [14] Suntres, Z. E., “Liposomal antioxidants for protection against oxidant-induced damage”, Journal of Toxicology, 2011: 152474, (2011).
  • [15] Coccimiglio, J., Alipour, M., Jiang, Z. H., Gottardo, C., Suntres, Z., “Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents”, Oxidative Medicine and Cellular Longevity, 2016: 1404505, (2016).
  • [16] Verma, A. R., Vijayakumar, M., Rao, C. V., Mathela, C. S., “In vitro and in vivo antioxidant properties and DNA damage protective activity of green fruit of Ficus glomerata”, Food and Chemical Toxicology, 48(2): 704-709, (2010).
  • [17] Abdul, Q. M., Shahzadi, S. K., Bashir, A., Munir, A., Shahzad, S., “Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs”, International Journal of Analytical Chemistry, 2017: 1-7, (2017).
  • [18] Can, B. K. H., “Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils”, Current Pharmaceutical Design, 14(29): 3106-3119, (2008).
  • [19] Gould, I. M., “The epidemiology of antibiotic resistance”, International Journal of Antimicrobial Agents, 32: 2-9, (2008).
  • [20] Martínez, J. L., Rojo, F., Vila, J., “Are nonlethal targets useful for developing novel antimicrobials?”, Future Microbiology, 6(6): 605-607, (2011).
  • [21] Osbourn, A. E., “Preformed antimicrobial compounds and plant defense against fungal attack”, The Plant Cell, 8(10): 1821, (1996).
  • [22] Nash, R. J., Kato, A., Yu, C. Y., Fleet, G. W., “Iminosugars as therapeutic agents: recent advances and promising trends”, Future Medicinal Chemistry, 3(12): 1513-1521, (2011).
  • [23] Tagboto, S., Townson, S., “Antiparasitic properties of medicinal plants and other naturally occurring products”, Advances in Parasitology, 50: 199-295, (2001).
  • [24] Savoia, D., “Plant-derived antimicrobial compounds: alternatives to antibiotics”, Future Microbiology, 7(8): 979-990, (2012).
  • [25] Xi, Y., Sullivan, G. A., Jackson, A. L., Zhou, G. H., Sebranek, J. G., “Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system”, Meat Science, 88(3): 503-511, (2011).
  • [26] Martelli, G., Giacomini, D., “Antibacterial and antioxidant activities for natural and synthetic dual-active compounds”, European Journal of Medicinal Chemistry, 158: 91-105, (2018).
  • [27] Lambert, R. J. W., Skandamis, P. N., Coote, P. J., Nychas, G. J., “A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol”, Journal of Applied Microbiology, 91(3): 453-462, (2001).
  • [28] Ultee, A., Bennik, M. H. J., Moezelaar, R. J. A. E. M., “The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus”, Appl. Environ. Microbiol., 68(4): 1561-1568, (2002).
  • [29] Palaniappan, K., Holley, R. A., “Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria”, International Journal of Food Microbiology, 140(2-3): 164-168, (2010).
  • [30] Tamura, K., Nei, M., “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees”, Molecular Biology and Evolution, 10(3): 512-526, (1993).
  • [31] Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., “MEGA X: molecular evolutionary genetics analysis across computing platforms”, Molecular Biology and Evolution, 35(6): 1547-1549, (2018).
  • [32] Stecher, G., Tamura, K., Kumar, S., “Molecular evolutionary genetics analysis (MEGA) for macOS”, Molecular Biology and Evolution, 37(4): 1237-1239, (2020).
  • [33] Walker, J. B., Sytsma, K. J., “Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever”, Annals of Botany, 100(2): 375-391, (2007).
  • [34] Bräuchler, C., Meimberg, H., Heubl, G., “Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)-Taxonomy, biogeography and conflicts”, Molecular Phylogenetics and Evolution, 55(2): 501-523, (2010).
  • [35] Drew, B. T., Sytsma, K. J., “Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae)”, American journal of botany, 99(5): 933-953, (2012).
  • [36] Tung, Y. T., Wu, J. H., Kuo, Y. H., Chang, S. T., “Antioxidant activities of natural phenolic compounds from Acacia confusa bark”, Bioresource Technology, 98(5): 1120-1123, (2007).
  • [37] Brand-Williams, W., Cuvelier, M. E., Berset, C., “Use of a free radical method to evaluate antioxidant activity”, Food Science and Technology–Lebensmittel Wissenschaft und Technologie, 28: 25-30, (1995).
  • [38] AAT Bioquest, Inc.,“Quest Graph™ IC50 Calculator”, Retrieved from https://www.aatbio.com/tools/ic50-calculator, (2020).
  • [39] Russell, A. D., Furr, J. R., “The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid”, Journal of Applied Bacteriology, 43(2): 253-260, (1977).
  • [40] Irobi, O. N., Moo-Young, M., Anderson, W. A., Daramola, S. O., “Antimicrobial activity of bark extracts of Bridelia ferruginea (Euphorbiaceae)”, Journal of Ethnopharmacology, 43(3): 185-190, (1994).
  • [41] Clinical and Laboratory Standards Institute, “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard”, 9 th ed., CLSI document M07-A9, Wayne, 68, (2012).
  • [42] National Committee for Clinical Laboratory Standards, “Performance Standards for Antimicrobial Susceptibility Testing”, 12 th ed., Informational Supplement M100-S12, NCCLS, Wayne, PA, (2002).
  • [43] Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., Donoghue, M. J., “The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny”, Annals of the Missouri Botanical Garden, 82(2): 247-277, (1995).
  • [44] Poczai, P., Hyvönen, J., “Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects”, Molecular Biology Reports, 37(4): 1897-1912, (2010).
  • [45] Álvarez, I., Wendel, J. F., “Ribosomal ITS sequences and plant phylogenetic inference”, Molecular Phylogenetics and Evolution, 29(3): 417-434, (2003).
  • [46] Stecher, G., Tamura, K., Kumar, S., “Molecular evolutionary genetics analysis (MEGA) for macOS”, Molecular Biology and Evolution, 37(4): 1237-1239, (2020).
  • [47] Commoner, B., Townsend, J., Pake, G. E., “Free radicals in biological materials”, Nature, 174(4432): 689-691, (1954).
  • [48] Dupont, G. P., Huecksteadt, T. P., Marshall, B. C., Ryan, U. S., Michael, J. R., Hoidal, J. R., “Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells”, The Journal of Clinical İnvestigation, 89(1): 197-202, (1992).
  • [49] Rodriguez-Garcia, I., Silva-Espinoza, B. A., Ortega-Ramirez, L. A., Leyva, J. M., Siddiqui, M. W., Cruz-Valenzuela, M. R., Ayala-Zavala, J. F., “Oregano essential oil as an antimicrobial and antioxidant additive in food products”, Critical Reviews in Food Science and Nutrition, 56(10): 1717-1727, (2016).
  • [50] Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., Mittler, R., “Abiotic and biotic stress combinations”, New Phytologist, 203(1): 32-43, (2014).
  • [51] Chanda, S., Dave, R., “In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview”, African Journal of Microbiology Research, 3(13): 981-996, (2009).
  • [52] Michalak, A., “Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress”, Polish Journal of Environmental Studies, 15(4): 523-30, (2006).
  • [53] Winkel-Shirley, B., “Biosynthesis of flavonoids and effects of stress”, Current opinion in plant biology, 5(3): 218-223, (2002).
  • [54] Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez-Lefebre, L. R., Sánchez, E., Romero, L., “Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants”, Plant Science, 160(2): 315-321, (2001).
  • [55] Alam, M. N., Bristi, N. J., Rafiquzzaman, M., “Review on in vivo and in vitro methods evaluation of antioxidant activity”, Saudi Pharmaceutical Journal, 21(2): 143-152, (2013).
  • [56] Karadag, A., Ozcelik, B., Saner, S., “Review of methods to determine antioxidant capacities”, Food Analytical Methods, 2(1): 41-60, (2009).
  • [57] Prior, R. L., Wu, X., Schaich, K., “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements”, Journal of Agricultural and Food Chemistry, 53(10): 4290-4302, (2005).
  • [58] Dhanani, T., Shah, S., Gajbhiye, N. A., Kumar, S., “Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera”, Arabian Journal of Chemistry, 10: 1193-1199, (2017).
  • [59] Xu, D. P., Zhou, Y., Zheng, J., Li, S., Li, A. N., Li, H. B., “Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology”, Molecules, 21(1): 2-12, (2016).
  • [60] Shan, B., Cai, Y. Z., Sun, M., Corke, H., “Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents”, Journal of Agricultural and Food Chemistry, 53(20): 7749-7759, (2005).
  • [61] Choe, E., Min, D. B., “Mechanisms and factors for edible oil oxidation”, Comprehensive Reviews in Food Science and Food Safety, 5(4): 169-186, (2006).
  • [62] Mechergui, K., Coelho, J. A., Serra, M. C., Lamine, S. B., Boukhchina, S., Khouja, M. L., “Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.) Ietswaart from Tunisia: chemical composition and antioxidant activity”, Journal of the Science of Food and Agriculture, 90(10): 1745-1749, (2010).
  • [63] Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Trivic, S., “Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts”, Molecules, 16(9): 7401-7414, (2011).
  • [64] Han, F., Ma, G. Q., Yang, M., Yan, L., Xiong, W., Shu, J. C., Xu, H. L., “Chemical composition and antioxidant activities of essential oils from different parts of the oregano”, Journal of Zhejiang University-Science B, 18(1): 79-84, (2017).
  • [65] Stanojević, L. P., Stanojević, J. S., Cvetković, D. J., Ilić, D. P., “Antioxidant activity of oregano essential oil (Origanum vulgare L.)”, Biologica Nyssana, 7(2): 131-139, (2016).
  • [66] Burt, S. A., Reinders, R. D., “Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7”, Letters in Applied Microbiology”, 36(3): 162-167, (2003).
  • [67] Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., “Biological effects of essential oils–a review”, Food and Chemical Toxicology, 46(2): 446-475, (2008).
  • [68] De Vincenzi, M., Silano, M., Maialetti, F., Scazzocchio, B., “Constituents of aromatic plants: II. Estragole”, Fitoterapia, 71(6): 725-729, (2000).
  • [69] Santoyo, S., Cavero, S., Jaime, L., Ibanez, E., Senorans, F. J., Reglero, G., “Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters”, Journal of Food Protection, 69(2): 369-375, (2006).
  • [70] Brđanin, S., Bogdanović, N., Kolundžić, M., Milenković, M., Golić, N., Kojić, M., Kundaković, T., “Antimicrobial activity of oregano (Origanum vulgare L.): And basil (Ocimum basilicum L.): Extracts”, Advanced Technologies, 4(2): 5-10, (2015).
There are 70 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Biology
Authors

Arzu Özgen 0000-0003-2104-6019

Nurcihan Tan 0000-0002-0029-0197

Ömer Taştan This is me 0000-0003-1174-5860

Funda Pehlevan This is me 0000-0003-3906-977X

Project Number YUP-080518-AÖ
Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 2

Cite

APA Özgen, A., Tan, N., Taştan, Ö., Pehlevan, F. (2021). Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity. Gazi University Journal of Science, 34(2), 311-325. https://doi.org/10.35378/gujs.751660
AMA Özgen A, Tan N, Taştan Ö, Pehlevan F. Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity. Gazi University Journal of Science. June 2021;34(2):311-325. doi:10.35378/gujs.751660
Chicago Özgen, Arzu, Nurcihan Tan, Ömer Taştan, and Funda Pehlevan. “Phylogenetic Analysis of Origanum Vulgare and Its Antioxidant and Antimicrobial Activity”. Gazi University Journal of Science 34, no. 2 (June 2021): 311-25. https://doi.org/10.35378/gujs.751660.
EndNote Özgen A, Tan N, Taştan Ö, Pehlevan F (June 1, 2021) Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity. Gazi University Journal of Science 34 2 311–325.
IEEE A. Özgen, N. Tan, Ö. Taştan, and F. Pehlevan, “Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity”, Gazi University Journal of Science, vol. 34, no. 2, pp. 311–325, 2021, doi: 10.35378/gujs.751660.
ISNAD Özgen, Arzu et al. “Phylogenetic Analysis of Origanum Vulgare and Its Antioxidant and Antimicrobial Activity”. Gazi University Journal of Science 34/2 (June 2021), 311-325. https://doi.org/10.35378/gujs.751660.
JAMA Özgen A, Tan N, Taştan Ö, Pehlevan F. Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity. Gazi University Journal of Science. 2021;34:311–325.
MLA Özgen, Arzu et al. “Phylogenetic Analysis of Origanum Vulgare and Its Antioxidant and Antimicrobial Activity”. Gazi University Journal of Science, vol. 34, no. 2, 2021, pp. 311-25, doi:10.35378/gujs.751660.
Vancouver Özgen A, Tan N, Taştan Ö, Pehlevan F. Phylogenetic Analysis of Origanum vulgare and Its Antioxidant and Antimicrobial Activity. Gazi University Journal of Science. 2021;34(2):311-25.