Research Article
BibTex RIS Cite

Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System

Year 2021, Volume: 34 Issue: 3, 835 - 849, 01.09.2021
https://doi.org/10.35378/gujs.773320

Abstract

The purpose of this research is to present the designs required and methodology of prototype production to control electronically a mechanical-controllable system on a case study. The system under consideration is a field crop sprayer. The reason for the investigation of this system is operator exposure to the harmful chemical and inefficiency of flow control. It is necessary to precisely start and end the chemical flow at the requested location, to close a certain part of the spraying line, and to prevent overdosing during the pulverization. An Arduino system was designed to control a precise electronic flow system. In this regard, Mechanical flow-control valves are equipped with 16 bar pressure-resistant and chemical resistant solenoid valves. Designs were produced and prototypes were presented. Low-cost sprayer control systems (SCS) chemical losses were reduced by 6% to 20%. The ergonomic design increased the productivity of the operator. Moreover, this system reduced fuel consumption by 2% to 6%. It is 40% more economical than existing systems. As a result, productive electronic control was achieved in the field crop sprayer.

Supporting Institution

KOSGEB

Project Number

SCS-V1 AR-GE İNOVASYON PROJESi

References

  • [1] M. Agovino, M. Casaccia, M. Ciommi, M. Ferrara, K. Marchesano, Agriculture, climate change and sustainability: The case of EU-28, Ecol. Indic. (2018). https://doi.org/10.1016/j.ecolind.2018.04.064.
  • [2] R. Gonzalez, A. Pawlowski, C. Rodriguez, J.L. Guzman, J. Sanchez-Hermosilla, Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications, Spanish J. Agric. Res. 10 (2012) 939. https://doi.org/10.5424/sjar/2012104-2797.
  • [3] K.H. Kim, E. Kabir, S.A. Jahan, Exposure to pesticides and the associated human health effects, Sci. Total Environ. (2017). https://doi.org/10.1016/j.scitotenv.2016.09.009.
  • [4] J. George, Y. Shukla, Pesticides and cancer: Insights into toxicoproteomic-based findings, J. Proteomics. (2011). https://doi.org/10.1016/j.jprot.2011.09.024.
  • [5] A.F.B. de Oliveira, M.R. de Souza, D. Benedetti, A.S. Scotti, L.S. Piazza, A.L.H. Garcia, J.F. Dias, L.A.B. Niekraszewicz, A. Duarte, D. Bauer, L. Amaral, C.L. Bassi Branco, É. de Melo Reis, F.R. da Silva, J. da Silva, Investigation of pesticide exposure by genotoxicological, biochemical, genetic polymorphic and in silico analysis, Ecotoxicol. Environ. Saf. (2019). https://doi.org/10.1016/j.ecoenv.2019.04.023.
  • [6] A.T. Duga, K. Ruysen, D. Dekeyser, D. Nuyttens, D. Bylemans, B.M. Nicolai, P. Verboven, Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics, Crop Prot. 67 (2015) 200–213. https://doi.org/https://doi.org/10.1016/j.cropro.2014.10.016.
  • [7] M. Velandia, M. Buschermohle, J.A. Larson, N.M. Thompson, B.M. Jernigan, The economics of automatic section control technology for planters: A case study of middle and west tennessee farms, Comput. Electron. Agric. 95 (2013) 1–10. https://doi.org/10.1016/j.compag.2013.03.006.
  • [8] T.R. Way, K. Von Bargen, R.D. Grisso, L.L. Bashford, Feedback system to control chemical flow for injection sprayers, Comput. Electron. Agric. 9 (1993) 123–132. https://doi.org/https://doi.org/10.1016/0168-1699(93)90003-J.
  • [9] B.T.W. Putra, P. Soni, B. Marhaenanto, Pujiyanto, S. Sisbudi Harsono, S. Fountas, Using information from images for plantation monitoring: A review of solutions for smallholders, Inf. Process. Agric. (2019). https://doi.org/10.1016/j.inpa.2019.04.005.
  • [10] P. D. Ayers, S. M. Rogowski, B. L. Kimble, An Investigation of Factors Affecting Sprayer Control System Performance, Appl. Eng. Agric. 6 (1990) 701–706. https://doi.org/https://doi.org/10.13031/2013.26451.
  • [11] M.E.R. Paice, P.C.H. Miller, W. Day, Control requirements for spatially selective herbicide sprayers, Comput. Electron. Agric. 14 (2002) 163–177. https://doi.org/10.1016/0168-1699(95)00046-1.
  • [12] H. Maghsoudi, S. Minaei, B. Ghobadian, H. Masoudi, Ultrasonic sensing of pistachio canopy for low-volume precision spraying, Comput. Electron. Agric. (2015). https://doi.org/10.1016/j.compag.2014.12.015.
  • [13] Z. Zhang, H. Zhu, H. Guler, Y. Shen, Improved premixing in-line injection system for variable-rate orchard sprayers with Arduino platform, Comput. Electron. Agric. 162 (2019) 389–396. https://doi.org/10.1016/j.compag.2019.04.023.
  • [14] M. Pérez-Ruiz, P. Gonzalez-de-Santos, A. Ribeiro, C. Fernandez-Quintanilla, A. Peruzzi, M. Vieri, S. Tomic, J. Agüera, Highlights and preliminary results for autonomous crop protection, Comput. Electron. Agric. 110 (2015) 150–161. https://doi.org/10.1016/j.compag.2014.11.010.
  • [15] F. Khosro Anjom, S.G. Vougioukas, D.C. Slaughter, Development and application of a strawberry yield-monitoring picking cart, Comput. Electron. Agric. 155 (2018) 400–411. https://doi.org/10.1016/j.compag.2018.10.038.
  • [16] A.A. Alameen, K.A. Al-Gaadi, E.K. Tola, Development and performance evaluation of a control system for variable rate granular fertilizer application, Comput. Electron. Agric. 160 (2019) 31–39. https://doi.org/10.1016/j.compag.2019.03.011.
  • [17] D. Ojados Gonzalez, B. Martin-Gorriz, I. Ibarra Berrocal, B. Miguel Hernandez, F. Caro Garcia, P. Morales Sanchez, Development of an automatically deployable roll over protective structure for agricultural tractors based on hydraulic power: Prototype and first tests, Comput. Electron. Agric. 124 (2016) 46–54. https://doi.org/10.1016/j.compag.2016.03.027.
  • [18] P.B. Andrade, P.E. Cruvinel, E.A.G. Pẽaloza, Module for Virtual Calibration of Sensors of Agricultural Spraying Systems (Temperature, Pressure and flow) Using an Arduino-Based Architecture and a Controller Area Network Bus (CAN), Proc. - 12th IEEE Int. Conf. Semant. Comput. ICSC 2018. 2018-Janua (2018) 352–357. https://doi.org/10.1109/ICSC.2018.00072.
  • [19] P. Chueca, C. Garcera, E. Molto, A. Gutierrez, Development of a sensor-controlled sprayer for applying low-volume bait treatments, Crop Prot. 27 (2008) 1373–1379. https://doi.org/https://doi.org/10.1016/j.cropro.2008.05.004.
  • [20] J.D. Luck, S.K. Pitla, S.A. Shearer, T.G. Mueller, C.R. Dillon, J.P. Fulton, S.F. Higgins, Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles, Comput. Electron. Agric. 70 (2010) 19–26. https://doi.org/10.1016/j.compag.2009.08.003.
  • [21] Alameen, A. A., Al-Gaadi, K. A., Tola, E. K. “Development and performance evaluation of a control system for variable rate granular fertilizer application”, Comput. Electron. Agric., 160: 31–39, (2019).
  • [22] Ojados Gonzalez, D. et al. “Development of an automatically deployable roll over protective structure for agricultural tractors based on hydraulic power: Prototype and first tests”, Comput. Electron. Agric., 124: 46–54 (2016).
  • [23] Andrade, P. B., Cruvinel, P. E., Pẽaloza, E. A. G. “Module for virtual calibration of sensors of agricultural spraying systems (temperature, pressure and flow) using an arduino-based architecture and a Controller Area Network Bus (CAN)”, Proc. - 12th IEEE Int. Conf. Semant. Comput. ICSC 2018, 352–357, (2018).
  • [24] Ahmed, A., Khan, M. U., Rehan, M., Iqbal, N. “Two-controller anti-windup design for enlarging domain of stability of actuator constrained state-delay systems”, Asian J. Control, 15: 1821–1832, (2013).
  • [25] Chueca, P., Garcera, C., Molto, E., Gutierrez, A. “Development of a sensor-controlled sprayer for applying low-volume bait treatments”, Crop Prot., 27: 1373–1379 (2008).
  • [26] Luck, J. D. et al. “Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles”, Comput. Electron. Agric., 70: 19–26 (2010).
Year 2021, Volume: 34 Issue: 3, 835 - 849, 01.09.2021
https://doi.org/10.35378/gujs.773320

Abstract

Project Number

SCS-V1 AR-GE İNOVASYON PROJESi

References

  • [1] M. Agovino, M. Casaccia, M. Ciommi, M. Ferrara, K. Marchesano, Agriculture, climate change and sustainability: The case of EU-28, Ecol. Indic. (2018). https://doi.org/10.1016/j.ecolind.2018.04.064.
  • [2] R. Gonzalez, A. Pawlowski, C. Rodriguez, J.L. Guzman, J. Sanchez-Hermosilla, Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications, Spanish J. Agric. Res. 10 (2012) 939. https://doi.org/10.5424/sjar/2012104-2797.
  • [3] K.H. Kim, E. Kabir, S.A. Jahan, Exposure to pesticides and the associated human health effects, Sci. Total Environ. (2017). https://doi.org/10.1016/j.scitotenv.2016.09.009.
  • [4] J. George, Y. Shukla, Pesticides and cancer: Insights into toxicoproteomic-based findings, J. Proteomics. (2011). https://doi.org/10.1016/j.jprot.2011.09.024.
  • [5] A.F.B. de Oliveira, M.R. de Souza, D. Benedetti, A.S. Scotti, L.S. Piazza, A.L.H. Garcia, J.F. Dias, L.A.B. Niekraszewicz, A. Duarte, D. Bauer, L. Amaral, C.L. Bassi Branco, É. de Melo Reis, F.R. da Silva, J. da Silva, Investigation of pesticide exposure by genotoxicological, biochemical, genetic polymorphic and in silico analysis, Ecotoxicol. Environ. Saf. (2019). https://doi.org/10.1016/j.ecoenv.2019.04.023.
  • [6] A.T. Duga, K. Ruysen, D. Dekeyser, D. Nuyttens, D. Bylemans, B.M. Nicolai, P. Verboven, Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics, Crop Prot. 67 (2015) 200–213. https://doi.org/https://doi.org/10.1016/j.cropro.2014.10.016.
  • [7] M. Velandia, M. Buschermohle, J.A. Larson, N.M. Thompson, B.M. Jernigan, The economics of automatic section control technology for planters: A case study of middle and west tennessee farms, Comput. Electron. Agric. 95 (2013) 1–10. https://doi.org/10.1016/j.compag.2013.03.006.
  • [8] T.R. Way, K. Von Bargen, R.D. Grisso, L.L. Bashford, Feedback system to control chemical flow for injection sprayers, Comput. Electron. Agric. 9 (1993) 123–132. https://doi.org/https://doi.org/10.1016/0168-1699(93)90003-J.
  • [9] B.T.W. Putra, P. Soni, B. Marhaenanto, Pujiyanto, S. Sisbudi Harsono, S. Fountas, Using information from images for plantation monitoring: A review of solutions for smallholders, Inf. Process. Agric. (2019). https://doi.org/10.1016/j.inpa.2019.04.005.
  • [10] P. D. Ayers, S. M. Rogowski, B. L. Kimble, An Investigation of Factors Affecting Sprayer Control System Performance, Appl. Eng. Agric. 6 (1990) 701–706. https://doi.org/https://doi.org/10.13031/2013.26451.
  • [11] M.E.R. Paice, P.C.H. Miller, W. Day, Control requirements for spatially selective herbicide sprayers, Comput. Electron. Agric. 14 (2002) 163–177. https://doi.org/10.1016/0168-1699(95)00046-1.
  • [12] H. Maghsoudi, S. Minaei, B. Ghobadian, H. Masoudi, Ultrasonic sensing of pistachio canopy for low-volume precision spraying, Comput. Electron. Agric. (2015). https://doi.org/10.1016/j.compag.2014.12.015.
  • [13] Z. Zhang, H. Zhu, H. Guler, Y. Shen, Improved premixing in-line injection system for variable-rate orchard sprayers with Arduino platform, Comput. Electron. Agric. 162 (2019) 389–396. https://doi.org/10.1016/j.compag.2019.04.023.
  • [14] M. Pérez-Ruiz, P. Gonzalez-de-Santos, A. Ribeiro, C. Fernandez-Quintanilla, A. Peruzzi, M. Vieri, S. Tomic, J. Agüera, Highlights and preliminary results for autonomous crop protection, Comput. Electron. Agric. 110 (2015) 150–161. https://doi.org/10.1016/j.compag.2014.11.010.
  • [15] F. Khosro Anjom, S.G. Vougioukas, D.C. Slaughter, Development and application of a strawberry yield-monitoring picking cart, Comput. Electron. Agric. 155 (2018) 400–411. https://doi.org/10.1016/j.compag.2018.10.038.
  • [16] A.A. Alameen, K.A. Al-Gaadi, E.K. Tola, Development and performance evaluation of a control system for variable rate granular fertilizer application, Comput. Electron. Agric. 160 (2019) 31–39. https://doi.org/10.1016/j.compag.2019.03.011.
  • [17] D. Ojados Gonzalez, B. Martin-Gorriz, I. Ibarra Berrocal, B. Miguel Hernandez, F. Caro Garcia, P. Morales Sanchez, Development of an automatically deployable roll over protective structure for agricultural tractors based on hydraulic power: Prototype and first tests, Comput. Electron. Agric. 124 (2016) 46–54. https://doi.org/10.1016/j.compag.2016.03.027.
  • [18] P.B. Andrade, P.E. Cruvinel, E.A.G. Pẽaloza, Module for Virtual Calibration of Sensors of Agricultural Spraying Systems (Temperature, Pressure and flow) Using an Arduino-Based Architecture and a Controller Area Network Bus (CAN), Proc. - 12th IEEE Int. Conf. Semant. Comput. ICSC 2018. 2018-Janua (2018) 352–357. https://doi.org/10.1109/ICSC.2018.00072.
  • [19] P. Chueca, C. Garcera, E. Molto, A. Gutierrez, Development of a sensor-controlled sprayer for applying low-volume bait treatments, Crop Prot. 27 (2008) 1373–1379. https://doi.org/https://doi.org/10.1016/j.cropro.2008.05.004.
  • [20] J.D. Luck, S.K. Pitla, S.A. Shearer, T.G. Mueller, C.R. Dillon, J.P. Fulton, S.F. Higgins, Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles, Comput. Electron. Agric. 70 (2010) 19–26. https://doi.org/10.1016/j.compag.2009.08.003.
  • [21] Alameen, A. A., Al-Gaadi, K. A., Tola, E. K. “Development and performance evaluation of a control system for variable rate granular fertilizer application”, Comput. Electron. Agric., 160: 31–39, (2019).
  • [22] Ojados Gonzalez, D. et al. “Development of an automatically deployable roll over protective structure for agricultural tractors based on hydraulic power: Prototype and first tests”, Comput. Electron. Agric., 124: 46–54 (2016).
  • [23] Andrade, P. B., Cruvinel, P. E., Pẽaloza, E. A. G. “Module for virtual calibration of sensors of agricultural spraying systems (temperature, pressure and flow) using an arduino-based architecture and a Controller Area Network Bus (CAN)”, Proc. - 12th IEEE Int. Conf. Semant. Comput. ICSC 2018, 352–357, (2018).
  • [24] Ahmed, A., Khan, M. U., Rehan, M., Iqbal, N. “Two-controller anti-windup design for enlarging domain of stability of actuator constrained state-delay systems”, Asian J. Control, 15: 1821–1832, (2013).
  • [25] Chueca, P., Garcera, C., Molto, E., Gutierrez, A. “Development of a sensor-controlled sprayer for applying low-volume bait treatments”, Crop Prot., 27: 1373–1379 (2008).
  • [26] Luck, J. D. et al. “Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles”, Comput. Electron. Agric., 70: 19–26 (2010).
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mechanical Engineering
Authors

Gürkan İrsel 0000-0003-0828-6560

Project Number SCS-V1 AR-GE İNOVASYON PROJESi
Publication Date September 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 3

Cite

APA İrsel, G. (2021). Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System. Gazi University Journal of Science, 34(3), 835-849. https://doi.org/10.35378/gujs.773320
AMA İrsel G. Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System. Gazi University Journal of Science. September 2021;34(3):835-849. doi:10.35378/gujs.773320
Chicago İrsel, Gürkan. “Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System”. Gazi University Journal of Science 34, no. 3 (September 2021): 835-49. https://doi.org/10.35378/gujs.773320.
EndNote İrsel G (September 1, 2021) Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System. Gazi University Journal of Science 34 3 835–849.
IEEE G. İrsel, “Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System”, Gazi University Journal of Science, vol. 34, no. 3, pp. 835–849, 2021, doi: 10.35378/gujs.773320.
ISNAD İrsel, Gürkan. “Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System”. Gazi University Journal of Science 34/3 (September 2021), 835-849. https://doi.org/10.35378/gujs.773320.
JAMA İrsel G. Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System. Gazi University Journal of Science. 2021;34:835–849.
MLA İrsel, Gürkan. “Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System”. Gazi University Journal of Science, vol. 34, no. 3, 2021, pp. 835-49, doi:10.35378/gujs.773320.
Vancouver İrsel G. Design and Implementation of Low-Cost Field Crop Sprayer Electronic Flow Control System. Gazi University Journal of Science. 2021;34(3):835-49.