Research Article
BibTex RIS Cite

Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid

Year 2022, Volume: 35 Issue: 2, 372 - 386, 01.06.2022
https://doi.org/10.35378/gujs.843764

Abstract

Herein, porous carbon materials were prepared using p-toluenesulfonic acid (TsOH) as a carbon source with (TsOH-STC) and without (TsOH-C) presence of MgCl2.6H2O. The products were evaluated in terms of CO2 (carbon dioxide) adsorption performance, texture and surface chemical structure. Both samples contain oxidized sulfur on their surface according to X-ray photoelectron spectroscopy (XPS). TsOH-STC has a 3D porous network, but TsOH-C consists of a dense structure. It was understood that TsOH-C is not suitable to be analyzed with N2 adsorption at cryogenic temperatures probably due to restricted access to narrow pores due to lack of external surface. The CO2 uptakes are 0.78 mmol g-1 for TsOH-C and 0.67 mmol g-1 for TsOH-STC at flue gas conditions (0.15 bar and 298 K) of coal fired power plants, which is a projection of ultramicropore (pores smaller than 0.7 nm) volume in 0.5 nm range. TsOH-C has CO2 uptake capacity of 2.21 mmol g-1 and TsOH-STC reaches 2.47 mmol g-1 at 1 bar at 298 K. Maximum CO2 adsorption enthalpy (Qst) value for TsOH-C is 24.9 kJ mol-1 and that of TsOH-STC is 25.7 kJ mol-1. IAST (ideal adsorbed solution theory) selectivities (CO2:N2 = 15:85) of the samples are 13.5 for TsOH-STC and 19.7 for TsOH-C at 1 bar. It was shown in this study that salt templating with MgCl2 does not influence ultramicroporosity development and provide moderate level CO2 capture performance. However, templating induces formation of supermicropores (micropores larger than 0.7 nm), large mesopores and macropores on TsOH derived carbons.

Thanks

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • [1] Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., Songolzadeh, R., “Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions”, The Scientific World Journal, 2014:1-34, (2014).
  • [2] Zhang, J., Xiao, P., Li, G., Webley, P.A., “Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption”, Energy Procedia, 1: 1115–1122, (2009).
  • [3] Ramezanipour Penchah, H., Ghaemi, A., Ganadzadeh Gilani, H., “Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO2 Capture”, Energy and Fuels, 33(12): 12578-12586, (2019).
  • [4] Armutlulu, A., Naeem, M.A., Liu, H.J., Kim, S.M., Kierzkowska, A., Fedorov, A., Müller, C.R., “Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance”, Advanced Materials, (29): 1–9, (2017).
  • [5] Liu, Z., Zhang, Z., Jia, Z., Zhao, L., Zhang, T., Xing, W., Komarneni, S., Subhan, F., Yan Z., “New strategy to prepare ultramicroporous carbon by ionic activation for superior CO2 capture”, Chemical Engineering Journal, 337: 290–299, (2018).
  • [6] Wang, R., Mi, J.S., Dong, X.Y., Liu, X.F., Lv, Y.R., Du, J., Zhao, J.Y., Zang, S.Q., “Creating a Polar Surface in Carbon Frameworks from Single-Source Metal-Organic Frameworks for Advanced CO2 Uptake and Lithium-Sulfur Batteries” Chemistry of Materials, 31: 4258–4266, (2019).
  • [7] Xu, F., Wu, D., Fu, R., Wei, B., “Design and preparation of porous carbons from conjugated polymer precursors”, Materials Today, 20: 629–656, (2017).
  • [8] Pardakhti, M., Jafari, T., Tobin, Z., Dutta, B., Moharreri, E., Shemshaki, N.S., Suib, S., Srivastava, R., “Trends in Solid Adsorbent Materials Development for CO2 Capture”, Applied Materials and Interfaces, 11: 34533–34559, (2019).
  • [9] Nwodika, C., Onukwuli, O.D., “Adsorption Study of Kinetics and Equilibrium of Basic Dye on Kola Nut Pod Carbon”, Gazi University Journal of Science, 30, 86–102, (2017).
  • [10] Altuntaş, D. B., Aslan, S., Nevruzoğlu, V., “Carbon Microrod Material Derived From Human Hair and Its Electrochemical Supercapacitor Application”, Gazi University Journal of Science, 34(3): 695-708, (2021). DOI: https://doi.org/10.35378/gujs.712032
  • [11] Sethia, G., Sayari, A., “Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture”, Carbon, 93: 68–80, (2015).
  • [12] Hwang, C.C., Tour, J.J., Kittrell, C., Espinal, L., Alemany, L.B., Tour, J.M., "Capturing carbon dioxide as a polymer from natural gas", Nature Communications, 5: 1–7, (2014).
  • [13] Shi, J., Yan, N., Cui, H., Xu, J., Liu, Y., Zhang, S., “Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO2 Adsorbents”, ACS Sustainable Chemistry and Engineering, 7: 19513–19521, (2019).
  • [14] Pampel, J., Mehmood, A., Antonietti, M.,. Fellinger, T.P, "Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons", Materials Horizons, 4: 493–501, (2017).
  • [15] Wang, M., Fan, X., Zhang, L., Liu, J., Wang, B., Cheng, R., Li, M., Tian, J., Shi, J., "Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon", Nanoscale, 9: 17593–17600, (2017).
  • [16] Rao, L., Ma, R., Liu, S., Wang, L., Wu, Z., Yang, J., Hu, X., "Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance", Chemical Engineering Journal, 362: 794–801, (2019).
  • [17] Wang, E.J., Sui, Z.Y., Sun, Y.N., Ma, Z., Han, B.H., "Effect of Porosity Parameters and Surface Chemistry on Carbon Dioxide Adsorption in Sulfur-Doped Porous Carbons", Langmuir, 34: 6358–6366, (2018).
  • [18] Seredych, M., Jagiello, J., Bandosz, T.J., "Complexity of CO2 adsorption on nanoporous sulfur-doped carbons - Is surface chemistry an important factor?", Carbon, 74: 207–217, (2014).
  • [19] Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T., Li K., "Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene-divinylbenzene) for CO2 Capture", The Journal of Physical Chemistry C, 121: 10000–10009, (2017).
  • [20] Myers, A.L., Prausnitz, J.M., "Thermodynamics of mixed-gas adsorption", AIChE Journal, 11: 121–127, (1965).
  • [21] Nicolae, S.A., Szilágyi, P.Á., Titirici, M.M., "Soft templating production of porous carbon adsorbents for CO2 and H2S capture", Carbon, 169: 193–204, (2020).
  • [22] Simon, C.M., Smit, B., Haranczyk M., "PyIAST: Ideal adsorbed solution theory (IAST) Python package", Computer Physics Communications, 200: 364–380, (2016).
  • [23] Greczynski, G., Hultman, L., "X-ray photoelectron spectroscopy: Towards reliable binding energy referencing", Progress in Materials Science, 107: 100591, (2020).
  • [24] Saha, D., Kienbaum, M.J., "Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review", Microporous Mesoporous Materials, 287: 29–55, (2019).
  • [25] Zaman, A.C., "Polyol derived sulfonated solvothermal carbon for efficient dye removal from aqueous solutions", Journal of Molecular Liquids, 249: 892–903, (2018).
  • [26] Seredych, M., Rodríguez-Castellón, E., Bandosz, T.J., "Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions", Carbon, 107: 501–509, (2016).
  • [27] Hu, Y., Yang, J., Tian, J., Jia, L., Yu, J.S., "Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence", Carbon, 77: 775–782, (2014).
  • [28] Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang, S., Yan, F., "Human hair-derived carbon flakes for electrochemical supercapacitors", Energy and Environmental Science, 7: 379–386, (2014).
  • [29] Seema, H., Kemp, K.C., Le, N.H., Park, S.W., Chandra V., Lee J.W., Kim K.S., “Highly selective CO2 capture by S-doped microporous carbon materials”, Carbon, 66: 320–326, (2014).
  • [30] Sevilla, M., Fuertes, A.B., "Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides", Chemistry, 15(16): 4195–4203, (2009).
  • [31] Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., "Recent advances in the textural characterization of hierarchically structured nanoporous materials", Chemical Society Reviews, 46: 389–414, (2017).
  • [32] Grau-Marin, D., Silvestre-Albero, J., Jardim, E.O., Jagiello, J., Betz, W.R., Peña, L.E., “Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods”, Carbon, 157:495–505, (2020).
  • [33] Jeromenok, J., Weber, J., “Restricted access: On the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials”, Langmuir, 29: 12982–12989, (2013).
  • [34] Jagiello, J., Ania, C., Parra, J.B., Cook, C., “Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2”, Carbon, 91: 330–337, (2015).
  • [35] Oschatz, M., Antonietti, M., "A search for selectivity to enable CO2 capture with porous adsorbents", Energy and Environmental Science, 11: 57–70, (2018).
  • [36] Zhou, L., Fan, J., Cui, G., Shang, X., Tang, Q., Wang, J., Fan, M., “Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels”, Green Chemistry, 16: 4009–4016, (2014).
  • [37] Kim, Y.K., Kim, G.M., Lee, J.W., "Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture", Journal of Materials Chemistry A, 3: 10919–10927, (2015).
  • [38] Zhang, Z., Zhou, J., Xing, W., Xue, Q., Yan, Z., Zhuo, S., Qiao, S.Z., “Critical role of small micropores in high CO2 uptake”, Physical Chemistry Chemical Physics, 15: 2523–2529, (2013).
  • [39] Zhao, Y., Liu, X., Yao, K.X., Zhao, L., Han, Y., "Superior Capture of CO2 Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon", Chemistry of Material, 24: 4725–4734, (2012).
  • [40] Sánchez-Sánchez, Á., Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D., "Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: Acidic and basic site interactions", ACS Applied Materials & Interfaces, 6: 21237–21247, (2014).
  • [41] Cimino, R.T., Kowalczyk, P., Ravikovitch, P.I., Neimark, A. V. “Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory”, Langmuir, 33: 1769–1779, (2017).
  • [42] Rouquerol, F., Rouquerol, J., Sing, K., "Thermodynamics of Adsorption at the Gas–Solid Interface, in: Adsorpt. by Powders Porous Solids", Elsevier, 27–50, (1999).
  • [43] Xia, Y., Zhu, Y., Tang, Y., "Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide", Carbon, 50: 5543–5553, (2012).
  • [44] Madani, S.H., Sedghi, S., Biggs, M.J., Pendleton, P., "Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption", ChemPhysChem, 16: 3797–3805, (2015).
Year 2022, Volume: 35 Issue: 2, 372 - 386, 01.06.2022
https://doi.org/10.35378/gujs.843764

Abstract

References

  • [1] Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., Songolzadeh, R., “Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions”, The Scientific World Journal, 2014:1-34, (2014).
  • [2] Zhang, J., Xiao, P., Li, G., Webley, P.A., “Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption”, Energy Procedia, 1: 1115–1122, (2009).
  • [3] Ramezanipour Penchah, H., Ghaemi, A., Ganadzadeh Gilani, H., “Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO2 Capture”, Energy and Fuels, 33(12): 12578-12586, (2019).
  • [4] Armutlulu, A., Naeem, M.A., Liu, H.J., Kim, S.M., Kierzkowska, A., Fedorov, A., Müller, C.R., “Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance”, Advanced Materials, (29): 1–9, (2017).
  • [5] Liu, Z., Zhang, Z., Jia, Z., Zhao, L., Zhang, T., Xing, W., Komarneni, S., Subhan, F., Yan Z., “New strategy to prepare ultramicroporous carbon by ionic activation for superior CO2 capture”, Chemical Engineering Journal, 337: 290–299, (2018).
  • [6] Wang, R., Mi, J.S., Dong, X.Y., Liu, X.F., Lv, Y.R., Du, J., Zhao, J.Y., Zang, S.Q., “Creating a Polar Surface in Carbon Frameworks from Single-Source Metal-Organic Frameworks for Advanced CO2 Uptake and Lithium-Sulfur Batteries” Chemistry of Materials, 31: 4258–4266, (2019).
  • [7] Xu, F., Wu, D., Fu, R., Wei, B., “Design and preparation of porous carbons from conjugated polymer precursors”, Materials Today, 20: 629–656, (2017).
  • [8] Pardakhti, M., Jafari, T., Tobin, Z., Dutta, B., Moharreri, E., Shemshaki, N.S., Suib, S., Srivastava, R., “Trends in Solid Adsorbent Materials Development for CO2 Capture”, Applied Materials and Interfaces, 11: 34533–34559, (2019).
  • [9] Nwodika, C., Onukwuli, O.D., “Adsorption Study of Kinetics and Equilibrium of Basic Dye on Kola Nut Pod Carbon”, Gazi University Journal of Science, 30, 86–102, (2017).
  • [10] Altuntaş, D. B., Aslan, S., Nevruzoğlu, V., “Carbon Microrod Material Derived From Human Hair and Its Electrochemical Supercapacitor Application”, Gazi University Journal of Science, 34(3): 695-708, (2021). DOI: https://doi.org/10.35378/gujs.712032
  • [11] Sethia, G., Sayari, A., “Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture”, Carbon, 93: 68–80, (2015).
  • [12] Hwang, C.C., Tour, J.J., Kittrell, C., Espinal, L., Alemany, L.B., Tour, J.M., "Capturing carbon dioxide as a polymer from natural gas", Nature Communications, 5: 1–7, (2014).
  • [13] Shi, J., Yan, N., Cui, H., Xu, J., Liu, Y., Zhang, S., “Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO2 Adsorbents”, ACS Sustainable Chemistry and Engineering, 7: 19513–19521, (2019).
  • [14] Pampel, J., Mehmood, A., Antonietti, M.,. Fellinger, T.P, "Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons", Materials Horizons, 4: 493–501, (2017).
  • [15] Wang, M., Fan, X., Zhang, L., Liu, J., Wang, B., Cheng, R., Li, M., Tian, J., Shi, J., "Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon", Nanoscale, 9: 17593–17600, (2017).
  • [16] Rao, L., Ma, R., Liu, S., Wang, L., Wu, Z., Yang, J., Hu, X., "Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance", Chemical Engineering Journal, 362: 794–801, (2019).
  • [17] Wang, E.J., Sui, Z.Y., Sun, Y.N., Ma, Z., Han, B.H., "Effect of Porosity Parameters and Surface Chemistry on Carbon Dioxide Adsorption in Sulfur-Doped Porous Carbons", Langmuir, 34: 6358–6366, (2018).
  • [18] Seredych, M., Jagiello, J., Bandosz, T.J., "Complexity of CO2 adsorption on nanoporous sulfur-doped carbons - Is surface chemistry an important factor?", Carbon, 74: 207–217, (2014).
  • [19] Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T., Li K., "Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene-divinylbenzene) for CO2 Capture", The Journal of Physical Chemistry C, 121: 10000–10009, (2017).
  • [20] Myers, A.L., Prausnitz, J.M., "Thermodynamics of mixed-gas adsorption", AIChE Journal, 11: 121–127, (1965).
  • [21] Nicolae, S.A., Szilágyi, P.Á., Titirici, M.M., "Soft templating production of porous carbon adsorbents for CO2 and H2S capture", Carbon, 169: 193–204, (2020).
  • [22] Simon, C.M., Smit, B., Haranczyk M., "PyIAST: Ideal adsorbed solution theory (IAST) Python package", Computer Physics Communications, 200: 364–380, (2016).
  • [23] Greczynski, G., Hultman, L., "X-ray photoelectron spectroscopy: Towards reliable binding energy referencing", Progress in Materials Science, 107: 100591, (2020).
  • [24] Saha, D., Kienbaum, M.J., "Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review", Microporous Mesoporous Materials, 287: 29–55, (2019).
  • [25] Zaman, A.C., "Polyol derived sulfonated solvothermal carbon for efficient dye removal from aqueous solutions", Journal of Molecular Liquids, 249: 892–903, (2018).
  • [26] Seredych, M., Rodríguez-Castellón, E., Bandosz, T.J., "Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions", Carbon, 107: 501–509, (2016).
  • [27] Hu, Y., Yang, J., Tian, J., Jia, L., Yu, J.S., "Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence", Carbon, 77: 775–782, (2014).
  • [28] Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang, S., Yan, F., "Human hair-derived carbon flakes for electrochemical supercapacitors", Energy and Environmental Science, 7: 379–386, (2014).
  • [29] Seema, H., Kemp, K.C., Le, N.H., Park, S.W., Chandra V., Lee J.W., Kim K.S., “Highly selective CO2 capture by S-doped microporous carbon materials”, Carbon, 66: 320–326, (2014).
  • [30] Sevilla, M., Fuertes, A.B., "Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides", Chemistry, 15(16): 4195–4203, (2009).
  • [31] Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., "Recent advances in the textural characterization of hierarchically structured nanoporous materials", Chemical Society Reviews, 46: 389–414, (2017).
  • [32] Grau-Marin, D., Silvestre-Albero, J., Jardim, E.O., Jagiello, J., Betz, W.R., Peña, L.E., “Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods”, Carbon, 157:495–505, (2020).
  • [33] Jeromenok, J., Weber, J., “Restricted access: On the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials”, Langmuir, 29: 12982–12989, (2013).
  • [34] Jagiello, J., Ania, C., Parra, J.B., Cook, C., “Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2”, Carbon, 91: 330–337, (2015).
  • [35] Oschatz, M., Antonietti, M., "A search for selectivity to enable CO2 capture with porous adsorbents", Energy and Environmental Science, 11: 57–70, (2018).
  • [36] Zhou, L., Fan, J., Cui, G., Shang, X., Tang, Q., Wang, J., Fan, M., “Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels”, Green Chemistry, 16: 4009–4016, (2014).
  • [37] Kim, Y.K., Kim, G.M., Lee, J.W., "Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture", Journal of Materials Chemistry A, 3: 10919–10927, (2015).
  • [38] Zhang, Z., Zhou, J., Xing, W., Xue, Q., Yan, Z., Zhuo, S., Qiao, S.Z., “Critical role of small micropores in high CO2 uptake”, Physical Chemistry Chemical Physics, 15: 2523–2529, (2013).
  • [39] Zhao, Y., Liu, X., Yao, K.X., Zhao, L., Han, Y., "Superior Capture of CO2 Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon", Chemistry of Material, 24: 4725–4734, (2012).
  • [40] Sánchez-Sánchez, Á., Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D., "Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: Acidic and basic site interactions", ACS Applied Materials & Interfaces, 6: 21237–21247, (2014).
  • [41] Cimino, R.T., Kowalczyk, P., Ravikovitch, P.I., Neimark, A. V. “Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory”, Langmuir, 33: 1769–1779, (2017).
  • [42] Rouquerol, F., Rouquerol, J., Sing, K., "Thermodynamics of Adsorption at the Gas–Solid Interface, in: Adsorpt. by Powders Porous Solids", Elsevier, 27–50, (1999).
  • [43] Xia, Y., Zhu, Y., Tang, Y., "Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide", Carbon, 50: 5543–5553, (2012).
  • [44] Madani, S.H., Sedghi, S., Biggs, M.J., Pendleton, P., "Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption", ChemPhysChem, 16: 3797–3805, (2015).
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Ali Can Zaman 0000-0002-0637-210X

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 35 Issue: 2

Cite

APA Zaman, A. C. (2022). Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid. Gazi University Journal of Science, 35(2), 372-386. https://doi.org/10.35378/gujs.843764
AMA Zaman AC. Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid. Gazi University Journal of Science. June 2022;35(2):372-386. doi:10.35378/gujs.843764
Chicago Zaman, Ali Can. “Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from P-Toluenesulfonic Acid”. Gazi University Journal of Science 35, no. 2 (June 2022): 372-86. https://doi.org/10.35378/gujs.843764.
EndNote Zaman AC (June 1, 2022) Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid. Gazi University Journal of Science 35 2 372–386.
IEEE A. C. Zaman, “Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid”, Gazi University Journal of Science, vol. 35, no. 2, pp. 372–386, 2022, doi: 10.35378/gujs.843764.
ISNAD Zaman, Ali Can. “Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from P-Toluenesulfonic Acid”. Gazi University Journal of Science 35/2 (June 2022), 372-386. https://doi.org/10.35378/gujs.843764.
JAMA Zaman AC. Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid. Gazi University Journal of Science. 2022;35:372–386.
MLA Zaman, Ali Can. “Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from P-Toluenesulfonic Acid”. Gazi University Journal of Science, vol. 35, no. 2, 2022, pp. 372-86, doi:10.35378/gujs.843764.
Vancouver Zaman AC. Carbon Dioxide Capture Properties of MgCl2 Templated Microporous Carbon from p-toluenesulfonic Acid. Gazi University Journal of Science. 2022;35(2):372-86.