Research Article
BibTex RIS Cite

The Effect of Annealing Technique on ZnO Film Properties

Year 2022, Volume: 35 Issue: 2, 618 - 629, 01.06.2022
https://doi.org/10.35378/gujs.872959

Abstract

ZnO films deposited on glass substrates by ultrasonically chemical spray pyrolysis technique have been investigated to establish the effect of the annealing technique on film properties. For this purpose, films have been exposed to standard thermal annealing and microwave annealing in an air atmosphere. It has been determined that the structural, morphological, compositional, and optical properties of the ZnO films correlate with each other. X-ray diffraction analyses have been revealed the highest crystallization level and changing preferred orientations for microwave annealed films. It has been identified that the optical band gap values of the films decreased from 3.27 eV to 3.23 eV and 3.21 eV after the standard and microwave thermal annealing, respectively. Scanning electron microscope images have been revealed homogeneous morphology at plan-view images of all films. Also, it has been determined that the root-like morphology from the higher magnification scanning electron microscopy images. Thicknesses of the films have been also determined from cross-sectional scanning electron microscope images as 1.04m, 0.92m, and 0.92m for ZnO, standard thermal annealed and microwave annealed ZnO films, respectively. Also, the O/Zn ratio revealed improved stoichiometry for annealed films according to as-deposited film for investigated regions. The dependence of photoluminescence intensity on annealing technique has also been investigated in the current study.

Thanks

The authors would like to thanks Prof Dr. Vildan BİLGİN and İbrahim GÜNEŞ for their support in thin film production process.

References

  • [1] Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., Steiner, T., “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50: 293-340, (2005).
  • [2] Triboulet, R., and Perrière, J., “Epitaxial growth of ZnO films”, Progress in Crystal Growth and Characterization of Materials, 47(2-3): 65-138, (2003).
  • [3] Hoffman R. L, Norris, B. J., Wager, J. F., “ZnO-based transparent thin film transistors”, Applied Physics Letters, 82(5): 733-735, (2003).
  • [4] Willander, M., Nur O., Zhao, Q., Yang, L., Lorenz, M., Cao, B., Z̃iga Pérez, J., Czekalla, C., Zimmermann, G., Grundmann, M., Bakin, A., Behrends, A., Al-Suleiman, M., El-Shaer, A., Che Mofor, A., Postels, B., Waag, A., Boukos, N., Travlos, A., Kwack, H., Guinard, J., Le Si Dang, D., “Zinc oxide nanorod based photonic devices: Recent progress in growth, lightemitting diodes and lasers”, Nanotechnology, 20(33): 332001, (2009).
  • [5] Di Mauro, A., Fragalà, M. E., Privitera, V., Impellizzeri, G., “ZnO for application in photocatalysis: From thin films to nanostructures”, Materials Science in Semiconductor Processing, 69: 44-51 (2017).
  • [6] Purica, M., Budianu, E., Rusu, E., Danila, M., Gavrila, R., Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)”, Thin Solid Films, 403: 485-488, (2002).
  • [7] Wang, L., Zhang, X., Zhao, S., Zhou, G., Zhou, Y., Qi, J., “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Applied Physics Letters, 86(2):024108, (2005).
  • [8] Bilgin, V., Kose, S., Atay, F., Akyuz, I., “The effect of Sn concentration on some physical properties of zinc oxide films prepared by ultrasonic spray pyrolysis”, Journal of Materials Science, 40(8): 1909-1915, (2005).
  • [9] Gonullu, M. P., and Ates, H., “Atomik Katman Biriktirme Tekniğine Genel Bakış: ZnO, TiO2 ve Al2O3 Filmlerin Üretimi”, Gazi Üniversitesi Fen Bilimleri Dergisi Bölüm C: Tasarım ve Teknoloji, 7(3): 649-660, (2019).
  • [10] Gao W., and Li, Z., “ZnO thin films produced by magnetron sputtering”, Ceramics International, 30(7): 1155-1159, (2003).
  • [11] Perednis, D., and Gauckler, L. J., “Thin film deposition using spray pyrolysis”, Journal of Electroceramics, 14(2): 103-111, (2005).
  • [12] Patil, P. S., “Versatility of chemical spray pyrolysis technique”, Materials Chemistry and Physics, 59(3): 185-198, (1999).
  • [13] Bates, C. H., White, W. B., Roy, R., “New High-Pressure Polymorph of Zinc Oxide”, Science, 137: 993, (1962).
  • [14] Garnier, J., Bouteville, A., Hamilton, J., Pemble, M. E., Povey, I. M., “A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films”, Thin Solid Films, 518(4): 1129-1135, (2009).
  • [15] Bacaksiz, E., Parlak, M., Tomakin, M., Özçelik, A., Karakiz, M., Altunbaş, M., “The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films”, Journal of Alloys and Compounds, 466(1-2): 447-450, (2008).
  • [16] Yoon S. H., and Kim, D. J., “Effect of substrate on the preferred orientation of ZnO films by chemical solution deposition”, Journal of Crystal Growth, 303(2): 568-573, (2007).
  • [17] Salameh, B., Alsmadi, A. M., Shatnawi, M., “Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: Role of oxygen vacancies on the ferromagnetic ordering”, Journal of Alloys and Compounds, 835: 155287, (2020).
  • [18] Chu, C. H., Wu, H. W., Huang, J. L., “Effect of annealing temperature and atmosphere on aluminum-doped ZnO/Au/aluminum-doped ZnO thin film properties”, Thin Solid Films, 605: 121-128, (2016).
  • [19] Goktas, A., “High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments”, Journal of Alloys and Compounds, 735: 2038-2045, (2018).
  • [20] Cui, L., Zhang, H. Y., Wang, G. G., Yang, F. X., Kuang, X. P., Sun, R., Han, J. C., “Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering,” Applied Surface Science, 258(7): 2479-2485, (2012).
  • [21] Xue, X. T., Gu, Y., Ma, H. P., Hang, C. Z., Tao, J. J., Lu, H. L., Zhang, D. W “Effect of rapid thermal annealing on the properties of zinc tin oxide films prepared by plasma-enhanced atomic layer deposition”, Ceramics International, 46(9): 13033-13039, (2020).
  • [22] Kuşkonmaz N. and Kutbay, I., "Mikrodalga ısıtmanın seramik üretiminde kullanımı," Metalurji Dergisi, 137: 52-56, (2004).
  • [23] Atay, F., V, Bilgin., Akyuz, I., Kose, S.,“The effect of In doping on some physical properties of CdS films”, Materials Science in Semiconductor Processing, 6: 197-203, (2003).
  • [24] Barrett, C. S., and Massalski, T.B., Structure of Metals, 35, Third edition, Pergamon, Oxford, New York, 204, (1980).
  • [25] Bilgin, V., Akyuz, I., Ketenci, E., Kose, S., Atay, F., “Electrical, structural and surface properties of fluorine doped tin oxide films”, Applied Surface Science, 256(22): 6586-6591, (2010).
  • [26] Abdallah, B., Jazmati, A. K., Refaai, R., “Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering”, Materials Research, 20(3): 607-612, (2017).
  • [27] Yue-Hui, H., Yi-Chuan, C., Hai-Jun, X., Hao, G., Wei-Hui, J., Fei, H., Yan-Xiang, W. “Texture ZnO thin-films and their application as front electrode in solar cells”, Engineering, 2: 973-978, (2010).
  • [28] Xu, Li., Zhu, X., Yang, D., “Enhanced luminescent performance with surface wrinkled Al-doped ZnO films", Journal of Materials Science: Materials in Electronics, 31: 6304-6312, (2020).
  • [29] Sutanto, H., Durri, S., Wibowo, S., Hadiyanto, H., Hidayanto, E., "Rootlike morphology of ZnO:Al thin film deposited on amorphous glass substrate by sol-gel method", Physics Research International, 2016: 1-7, (2016).
  • [30] Navin, K. and Kurchania, R., “Structural, Morphological and Optical Studies of Ripple-Structured ZnO Thin Films”, Applied Physics A: Materials Science and Processing, 121: 1155-1161, (2015).
  • [31] Kwon, S. J. Park, J. H., Park, J. G., “Wrinkling of sol–gel-derived thin Film”, Physical Review E 71: 011604, (2005).
  • [32] Scherer, G. W., “Sintering of sol–gel films”, Journal of Sol-Gel Science and Technology 8(1): 353-363, (1997).
  • [33] Goniakowski, J., and Noguera, C., “Relaxation and rumpling mechanisms on oxide surfaces”, Surface Science, 323(1-2): 129-141, (1995).
  • [34] Caglar, Y., Ilican, S., Caglar, M., Yakuphanoglu, F., “Effects of In, Al and Sn dopants on the structural and optical properties of ZnO thin films”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 1113-1119, (2007).
  • [35] Sengupta, J., Sahoo, R. K., Bardhan, K. K., Mukherjee, C. D., “Influence of annealing temperature on the structural, topographical and optical properties of sol–gel derived ZnO thin films”, Materials Letters, 65(17-18): 2572-2574, (2011).
  • [36] Ghosh, R., Basak, D., Fujihara, S., “Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films”, Journal of Applied Physics, 96(5): 2689-2692, (2004).
  • [37] Ramírez-Ortega D., Meléndez, A. M., Acevedo-Peña, P., González, I., Arroyo, R., “Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity”, Electrochimica Acta, 140: 541-549, (2014).
  • [38] Hong, R., Qi, H., Huang, J., He, H., Fan, Z., & Shao, J., “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films”, Thin Solid Films, 473(1): 58-62, (2005).
  • [39] Djurišić, A. B., Choy, W. C., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W., Gundu Rao, T. K., Chan, W. K., Fei Lui, H., Surya, C. “Photoluminescence and electron paramagnetic resonance of ZnOtetrapod structures”, Advanced Functional Materials, 14(9): 856–864, (2004).
  • [40] Nehru, L. C., Umadevi, M., Sanjeeviraja, C. “Studies on structural, optical and electrical properties of ZnO thin films prepared by the spray pyrolysis method”. International Journal of Materials Engineering, 2(1): 12-17, (2012).
  • [41] Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W. K., Zhong, Y. C., Wong, K. S., Chan, W. K., Tam, H. L., Cheah, K. W., Kwok, W. M., Phillips, D. L. “Defect emissions in ZnO nanostructures”, Nanotechnology, 18(9): 095702(8pp), (2007).
  • [42] Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., Liu, R. “Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods”, Scientific reports, 4(1): 1-8, (2014).
  • [43] Peng, W. Q., Qu, S. C., Cong, G.W., Wang, Z. G., “Structure and visible luminescence of ZnO nanoparticles”, Materials Science in Semiconductor Processing, 9(1–3): 156–159, (2006).
  • [44] Panigrahy, B., Aslam, M., Misra, D. S., Ghosh, M., Bahadur, D., “Defect-related emission and magnetization properties of ZnO Nanorods”, Advanced Functional Materials, 20(7): 1161–1165, (2010).
Year 2022, Volume: 35 Issue: 2, 618 - 629, 01.06.2022
https://doi.org/10.35378/gujs.872959

Abstract

References

  • [1] Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., Steiner, T., “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50: 293-340, (2005).
  • [2] Triboulet, R., and Perrière, J., “Epitaxial growth of ZnO films”, Progress in Crystal Growth and Characterization of Materials, 47(2-3): 65-138, (2003).
  • [3] Hoffman R. L, Norris, B. J., Wager, J. F., “ZnO-based transparent thin film transistors”, Applied Physics Letters, 82(5): 733-735, (2003).
  • [4] Willander, M., Nur O., Zhao, Q., Yang, L., Lorenz, M., Cao, B., Z̃iga Pérez, J., Czekalla, C., Zimmermann, G., Grundmann, M., Bakin, A., Behrends, A., Al-Suleiman, M., El-Shaer, A., Che Mofor, A., Postels, B., Waag, A., Boukos, N., Travlos, A., Kwack, H., Guinard, J., Le Si Dang, D., “Zinc oxide nanorod based photonic devices: Recent progress in growth, lightemitting diodes and lasers”, Nanotechnology, 20(33): 332001, (2009).
  • [5] Di Mauro, A., Fragalà, M. E., Privitera, V., Impellizzeri, G., “ZnO for application in photocatalysis: From thin films to nanostructures”, Materials Science in Semiconductor Processing, 69: 44-51 (2017).
  • [6] Purica, M., Budianu, E., Rusu, E., Danila, M., Gavrila, R., Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)”, Thin Solid Films, 403: 485-488, (2002).
  • [7] Wang, L., Zhang, X., Zhao, S., Zhou, G., Zhou, Y., Qi, J., “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Applied Physics Letters, 86(2):024108, (2005).
  • [8] Bilgin, V., Kose, S., Atay, F., Akyuz, I., “The effect of Sn concentration on some physical properties of zinc oxide films prepared by ultrasonic spray pyrolysis”, Journal of Materials Science, 40(8): 1909-1915, (2005).
  • [9] Gonullu, M. P., and Ates, H., “Atomik Katman Biriktirme Tekniğine Genel Bakış: ZnO, TiO2 ve Al2O3 Filmlerin Üretimi”, Gazi Üniversitesi Fen Bilimleri Dergisi Bölüm C: Tasarım ve Teknoloji, 7(3): 649-660, (2019).
  • [10] Gao W., and Li, Z., “ZnO thin films produced by magnetron sputtering”, Ceramics International, 30(7): 1155-1159, (2003).
  • [11] Perednis, D., and Gauckler, L. J., “Thin film deposition using spray pyrolysis”, Journal of Electroceramics, 14(2): 103-111, (2005).
  • [12] Patil, P. S., “Versatility of chemical spray pyrolysis technique”, Materials Chemistry and Physics, 59(3): 185-198, (1999).
  • [13] Bates, C. H., White, W. B., Roy, R., “New High-Pressure Polymorph of Zinc Oxide”, Science, 137: 993, (1962).
  • [14] Garnier, J., Bouteville, A., Hamilton, J., Pemble, M. E., Povey, I. M., “A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films”, Thin Solid Films, 518(4): 1129-1135, (2009).
  • [15] Bacaksiz, E., Parlak, M., Tomakin, M., Özçelik, A., Karakiz, M., Altunbaş, M., “The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films”, Journal of Alloys and Compounds, 466(1-2): 447-450, (2008).
  • [16] Yoon S. H., and Kim, D. J., “Effect of substrate on the preferred orientation of ZnO films by chemical solution deposition”, Journal of Crystal Growth, 303(2): 568-573, (2007).
  • [17] Salameh, B., Alsmadi, A. M., Shatnawi, M., “Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: Role of oxygen vacancies on the ferromagnetic ordering”, Journal of Alloys and Compounds, 835: 155287, (2020).
  • [18] Chu, C. H., Wu, H. W., Huang, J. L., “Effect of annealing temperature and atmosphere on aluminum-doped ZnO/Au/aluminum-doped ZnO thin film properties”, Thin Solid Films, 605: 121-128, (2016).
  • [19] Goktas, A., “High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments”, Journal of Alloys and Compounds, 735: 2038-2045, (2018).
  • [20] Cui, L., Zhang, H. Y., Wang, G. G., Yang, F. X., Kuang, X. P., Sun, R., Han, J. C., “Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering,” Applied Surface Science, 258(7): 2479-2485, (2012).
  • [21] Xue, X. T., Gu, Y., Ma, H. P., Hang, C. Z., Tao, J. J., Lu, H. L., Zhang, D. W “Effect of rapid thermal annealing on the properties of zinc tin oxide films prepared by plasma-enhanced atomic layer deposition”, Ceramics International, 46(9): 13033-13039, (2020).
  • [22] Kuşkonmaz N. and Kutbay, I., "Mikrodalga ısıtmanın seramik üretiminde kullanımı," Metalurji Dergisi, 137: 52-56, (2004).
  • [23] Atay, F., V, Bilgin., Akyuz, I., Kose, S.,“The effect of In doping on some physical properties of CdS films”, Materials Science in Semiconductor Processing, 6: 197-203, (2003).
  • [24] Barrett, C. S., and Massalski, T.B., Structure of Metals, 35, Third edition, Pergamon, Oxford, New York, 204, (1980).
  • [25] Bilgin, V., Akyuz, I., Ketenci, E., Kose, S., Atay, F., “Electrical, structural and surface properties of fluorine doped tin oxide films”, Applied Surface Science, 256(22): 6586-6591, (2010).
  • [26] Abdallah, B., Jazmati, A. K., Refaai, R., “Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering”, Materials Research, 20(3): 607-612, (2017).
  • [27] Yue-Hui, H., Yi-Chuan, C., Hai-Jun, X., Hao, G., Wei-Hui, J., Fei, H., Yan-Xiang, W. “Texture ZnO thin-films and their application as front electrode in solar cells”, Engineering, 2: 973-978, (2010).
  • [28] Xu, Li., Zhu, X., Yang, D., “Enhanced luminescent performance with surface wrinkled Al-doped ZnO films", Journal of Materials Science: Materials in Electronics, 31: 6304-6312, (2020).
  • [29] Sutanto, H., Durri, S., Wibowo, S., Hadiyanto, H., Hidayanto, E., "Rootlike morphology of ZnO:Al thin film deposited on amorphous glass substrate by sol-gel method", Physics Research International, 2016: 1-7, (2016).
  • [30] Navin, K. and Kurchania, R., “Structural, Morphological and Optical Studies of Ripple-Structured ZnO Thin Films”, Applied Physics A: Materials Science and Processing, 121: 1155-1161, (2015).
  • [31] Kwon, S. J. Park, J. H., Park, J. G., “Wrinkling of sol–gel-derived thin Film”, Physical Review E 71: 011604, (2005).
  • [32] Scherer, G. W., “Sintering of sol–gel films”, Journal of Sol-Gel Science and Technology 8(1): 353-363, (1997).
  • [33] Goniakowski, J., and Noguera, C., “Relaxation and rumpling mechanisms on oxide surfaces”, Surface Science, 323(1-2): 129-141, (1995).
  • [34] Caglar, Y., Ilican, S., Caglar, M., Yakuphanoglu, F., “Effects of In, Al and Sn dopants on the structural and optical properties of ZnO thin films”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 1113-1119, (2007).
  • [35] Sengupta, J., Sahoo, R. K., Bardhan, K. K., Mukherjee, C. D., “Influence of annealing temperature on the structural, topographical and optical properties of sol–gel derived ZnO thin films”, Materials Letters, 65(17-18): 2572-2574, (2011).
  • [36] Ghosh, R., Basak, D., Fujihara, S., “Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films”, Journal of Applied Physics, 96(5): 2689-2692, (2004).
  • [37] Ramírez-Ortega D., Meléndez, A. M., Acevedo-Peña, P., González, I., Arroyo, R., “Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity”, Electrochimica Acta, 140: 541-549, (2014).
  • [38] Hong, R., Qi, H., Huang, J., He, H., Fan, Z., & Shao, J., “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films”, Thin Solid Films, 473(1): 58-62, (2005).
  • [39] Djurišić, A. B., Choy, W. C., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W., Gundu Rao, T. K., Chan, W. K., Fei Lui, H., Surya, C. “Photoluminescence and electron paramagnetic resonance of ZnOtetrapod structures”, Advanced Functional Materials, 14(9): 856–864, (2004).
  • [40] Nehru, L. C., Umadevi, M., Sanjeeviraja, C. “Studies on structural, optical and electrical properties of ZnO thin films prepared by the spray pyrolysis method”. International Journal of Materials Engineering, 2(1): 12-17, (2012).
  • [41] Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W. K., Zhong, Y. C., Wong, K. S., Chan, W. K., Tam, H. L., Cheah, K. W., Kwok, W. M., Phillips, D. L. “Defect emissions in ZnO nanostructures”, Nanotechnology, 18(9): 095702(8pp), (2007).
  • [42] Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., Liu, R. “Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods”, Scientific reports, 4(1): 1-8, (2014).
  • [43] Peng, W. Q., Qu, S. C., Cong, G.W., Wang, Z. G., “Structure and visible luminescence of ZnO nanoparticles”, Materials Science in Semiconductor Processing, 9(1–3): 156–159, (2006).
  • [44] Panigrahy, B., Aslam, M., Misra, D. S., Ghosh, M., Bahadur, D., “Defect-related emission and magnetization properties of ZnO Nanorods”, Advanced Functional Materials, 20(7): 1161–1165, (2010).
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Material Science
Authors

Meryem Polat Gönüllü 0000-0002-9503-227X

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 35 Issue: 2

Cite

APA Polat Gönüllü, M. (2022). The Effect of Annealing Technique on ZnO Film Properties. Gazi University Journal of Science, 35(2), 618-629. https://doi.org/10.35378/gujs.872959
AMA Polat Gönüllü M. The Effect of Annealing Technique on ZnO Film Properties. Gazi University Journal of Science. June 2022;35(2):618-629. doi:10.35378/gujs.872959
Chicago Polat Gönüllü, Meryem. “The Effect of Annealing Technique on ZnO Film Properties”. Gazi University Journal of Science 35, no. 2 (June 2022): 618-29. https://doi.org/10.35378/gujs.872959.
EndNote Polat Gönüllü M (June 1, 2022) The Effect of Annealing Technique on ZnO Film Properties. Gazi University Journal of Science 35 2 618–629.
IEEE M. Polat Gönüllü, “The Effect of Annealing Technique on ZnO Film Properties”, Gazi University Journal of Science, vol. 35, no. 2, pp. 618–629, 2022, doi: 10.35378/gujs.872959.
ISNAD Polat Gönüllü, Meryem. “The Effect of Annealing Technique on ZnO Film Properties”. Gazi University Journal of Science 35/2 (June 2022), 618-629. https://doi.org/10.35378/gujs.872959.
JAMA Polat Gönüllü M. The Effect of Annealing Technique on ZnO Film Properties. Gazi University Journal of Science. 2022;35:618–629.
MLA Polat Gönüllü, Meryem. “The Effect of Annealing Technique on ZnO Film Properties”. Gazi University Journal of Science, vol. 35, no. 2, 2022, pp. 618-29, doi:10.35378/gujs.872959.
Vancouver Polat Gönüllü M. The Effect of Annealing Technique on ZnO Film Properties. Gazi University Journal of Science. 2022;35(2):618-29.