Research Article
BibTex RIS Cite
Year 2022, Volume: 35 Issue: 3, 1116 - 1127, 01.09.2022
https://doi.org/10.35378/gujs.912709

Abstract

References

  • [1] Anta, J. A., Guillén, E., Tena-Zaera, R., “ZnO-based dye-sensitized solar cells”, The Journal of Physical Chemistry C, 116(21), 11413-11425, (2012).
  • [2] Ghosh, S., Saha, M., Paul, S., De, S. K., “Shape controlled plasmonic Sn doped CdO colloidal nanocrystals: a synthetic route to maximize the figure of merit of transparent conducting oxide. Small”, 13 (7), 1602469, (2017).
  • [3] El Radaf, I. M., Hameed, T. A., Dahy, T. M., “Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films”, Ceramics International, 45 (3), 3072-3080, (2019).
  • [4] Pal, D., Singhal, J., Mathur, A., Singh, A., Dutta, S., Zollner, S.,Chattopadhyay, S., “Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films”, Applied Surface Science, 421, 341-348, (2017).
  • [5] Ganesh, V., Arif, M., Manthrammel, M. A., Shkir, M., Singh, A., AlFaify, S., “Effect of La doping on key characteristics of SnO2 thin films facilely fabricated by spin coating technique”, Optical Materials, 94, 277-285, (2019).
  • [6] Benkara, S., Ghamri, H., Rechem, D., Zaabat, M., “Effect of experimental parameters and (Fe, Ni) doping on the structural, morphological, and optical properties of sol–gel dip-coated SnO2 films”, Journal of Materials Research, 32 (8), 1594-1602, (2017).
  • [7] Suthakaran, S., Dhanapandian, S., Krishnakumar, N., Ponpandian, N., “Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance”, Journal of Physics and Chemistry of Solids, 141, 109407, (2020).
  • [8] Houaidji, N., Ajili, M., Chouial, B., Kamoun, N. T.,Kamli, K., Khadraoui, A., Hadef, Z., Zaidi, B., Hadjoudja, B., “Study of Mn Doping on the Structural, Optoelectronic and Photoluminescence Properties of F-Doped SnO2 Sprayed Thin Films for Optoelectronic Applications”, In Journal of Nano Research, 65, 13-26, (2020).
  • [9] Ashtari, P., Pourghahramani, P., “Hydrometallurgical recycling of cobalt from zinc plants residue”, Journal of Material Cycles and Waste Management, 20(1): 155-166, (2018).
  • [10] Kim, H., Auyeung, R. C. Y., Piqué, A., “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition”, Thin Solid Films, 516 (15): 5052-5056, (2008).
  • [11] Yu, S., Li, L., Sun, Z., Zheng, H., Dong, H., Xu, D., Zhang, W., “Characteristics of Transparent Conducting W‐Doped SnO2 Thin Films Prepared by Using the Magnetron Sputtering Method”, Journal of the American Ceramic Society, 98 (4): 1121-1127, (2015).
  • [12] Okuno, T., Oshima, T., Lee, S. D., Fujita, S., “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method”, Physica Status Solidi C, 8(2): 540-542, (2011).
  • [13] İskenderoğlu, Demet, Harun Güney, and Muhammed Emin Güldüren. “Chromium–An effective dopant for engineering the structural and the optical properties of CdO nanostructures grown by SILAR method”, Optical Materials, 115: 111067, (2021).
  • [14] Liu, J., Liu, X., Zhai, Z., Jin, G., Jiang, Q., Zhao, Y., Luo, C., Quan, L., “Evaluation of depletion layer width and gas-sensing properties of antimony-doped tin oxide thin film sensors”, Sensors and Actuators B: Chemical, 220: 1354-1360, (2015).
  • [15] Batzill, M., Burst, J. M., Diebold, U., “Pure and cobalt-doped SnO2 (101) films grown by molecular beam epitaxy on Al2O3”, Thin Solid Films, 484(1-2): 132-139, (2005).
  • [16] Velusamy, P., Babu, R. R., Ramamurthi, K., Elangovan, E., Viegas, J., “Effect of La doping on the structural, optical and electrical properties of spray pyrolytically deposited CdO thin films”, Journal of Alloys and Compounds, 708, 804-812, (2017).
  • [17] Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G.,Hamilton, J.,Byrne, J.,O’Shea, K., Entezari, M.,Dionysiou, D. D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B: Environmental, 125: 331-349, (2012).
  • [18] Takagahara, T., Takeda, K., “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Physical Review B, 46(23): 15578, (1992).
  • [19] Li, Y., Yin, W., Deng, R., Chen, R., Chen, J., Yan, Q., Sun, H., Wei, S., Wu, T., “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule”, NPG Asia Materials, 4 (11): e30-e30, (2012).
  • [20] Entradas, T., Cabrita, J. F., Dalui, S., Nunes, M. R., Monteiro, O. C., Silvestre, A. J., “Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties”, Materials Chemistry and Physics, 147 (3): 563-571, (2014).
  • [21] Chun-Ming, L., Li-Mei, F., Xiao-Tao, Z., Wei-Lie, Z., “The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders”, Chinese Physics, 16 (1): 95, (2007).
  • [22] Turgut, G., Keskenler, E. F., Aydın, S., Sönmez, E., Doğan, S., Düzgün, B., Ertuğrul, M., “Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films”, Superlattices and Microstructures, 56: 107-116, (2013).
  • [23] Dugan, S., Koç, M.M. and Coşkun, B., “Structural, electrical and optical characterization of Mn doped CdO photodiodes”, Journal of Molecular Structure, 1202, 127235, (2020).
  • [24] Yetim, N.K., Aslan, N., Sarıoğlu, A., Sarı, N. and Koç, M.M., “Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers”, Journal of Materials Science: Materials in Electronics, 31(15), 12238-12248, (2020).
  • [25] İlhan, M., Koç, M.M., Coşkun, B. and Yakuphanoğlu, F., “Optical, Electrical and Photo responsive Properties of Cu2NiSnS4 Solar Detectors”, Journal of Electronic Materials, 49, 4457-4465, (2020).
  • [26] Uysal, B. Ö., Arıer, Ü. Ö. A., “Structural and optical properties of SnO2 nano films by spin-coating method”, Applied Surface Science, 350: 74-78, (2015).
  • [27] Hwang, J. D., Ho, T. H., “Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering”, Materials Science in Semiconductor Processing, 71: 396-400, (2017).
  • [28] Luo, S., Fan, J., Liu, W., Zhang, M., Song, Z., Lin, C., Wu, X., Chu, P. K., “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts”, Nanotechnology, 17(6): 1695, (2006).
  • [29] Deepa, S., Kumari, K. P., Thomas, B. Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films”, Ceramics International, 43(18): 17128-17141, (2017).
  • [30] Sangeetha, P., Sasirekha, V., Ramakrishnan, V., “Micro‐Raman investigation of tin dioxide nanostructured material based on annealing effect”, Journal of Raman Spectroscopy, 42(8): 1634-1639, (2011).

Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method

Year 2022, Volume: 35 Issue: 3, 1116 - 1127, 01.09.2022
https://doi.org/10.35378/gujs.912709

Abstract

Undoped and cobalt (Co) doped tin oxide (SnO2) films were prepared onto glass slides via the successive ionic layer adsorption and reaction (SILAR). Variable characterization methods were applied to examine the effects of cobalt impurities on physical properties of SnO2 films. The performed characterization measurements were X-ray diffraction, Ultraviolet–visible spectrometer, Photoluminescence, and Raman. No peak ascribed to Co, SnO, or Sn was found in the XRD spectrum which may indicate the integration of cobalt in SnO2 crystal lattices. And the obtained XRD peaks may be related to the tetragonal rutile phase of pure SnO2. SEM images exposed that the Co dopant atoms affectedthe sample morphologies. The optical analyses showed that the transmittance and reflectance percentages dropped by the introduction of impurities to the SnO2 system as the absorbance values of doped SnO2 samples increased. Thus,a red shift (2.6–1.8 eV) occurred in the bandgapsas Co concentration changed in the films. The Raman spectra of pure SnO2 and Co:SnO2 samples exhibited major peaksaround 481 cm−1, 571 cm−1 and 602 cm−1. In photoluminescence spectrum, it was noted that the emission intensity can both increase or decrease due to the different cobalt doping ratios in the SnO2 nanostructures. Resistance measurements displayed that the resistivity increased with the increment of doping concentration. However, it was shown that the electrical conductivities could be increased after the heat treatment of glass substrates up to 500 oC, a common behavior of semiconductor materials.

References

  • [1] Anta, J. A., Guillén, E., Tena-Zaera, R., “ZnO-based dye-sensitized solar cells”, The Journal of Physical Chemistry C, 116(21), 11413-11425, (2012).
  • [2] Ghosh, S., Saha, M., Paul, S., De, S. K., “Shape controlled plasmonic Sn doped CdO colloidal nanocrystals: a synthetic route to maximize the figure of merit of transparent conducting oxide. Small”, 13 (7), 1602469, (2017).
  • [3] El Radaf, I. M., Hameed, T. A., Dahy, T. M., “Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films”, Ceramics International, 45 (3), 3072-3080, (2019).
  • [4] Pal, D., Singhal, J., Mathur, A., Singh, A., Dutta, S., Zollner, S.,Chattopadhyay, S., “Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films”, Applied Surface Science, 421, 341-348, (2017).
  • [5] Ganesh, V., Arif, M., Manthrammel, M. A., Shkir, M., Singh, A., AlFaify, S., “Effect of La doping on key characteristics of SnO2 thin films facilely fabricated by spin coating technique”, Optical Materials, 94, 277-285, (2019).
  • [6] Benkara, S., Ghamri, H., Rechem, D., Zaabat, M., “Effect of experimental parameters and (Fe, Ni) doping on the structural, morphological, and optical properties of sol–gel dip-coated SnO2 films”, Journal of Materials Research, 32 (8), 1594-1602, (2017).
  • [7] Suthakaran, S., Dhanapandian, S., Krishnakumar, N., Ponpandian, N., “Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance”, Journal of Physics and Chemistry of Solids, 141, 109407, (2020).
  • [8] Houaidji, N., Ajili, M., Chouial, B., Kamoun, N. T.,Kamli, K., Khadraoui, A., Hadef, Z., Zaidi, B., Hadjoudja, B., “Study of Mn Doping on the Structural, Optoelectronic and Photoluminescence Properties of F-Doped SnO2 Sprayed Thin Films for Optoelectronic Applications”, In Journal of Nano Research, 65, 13-26, (2020).
  • [9] Ashtari, P., Pourghahramani, P., “Hydrometallurgical recycling of cobalt from zinc plants residue”, Journal of Material Cycles and Waste Management, 20(1): 155-166, (2018).
  • [10] Kim, H., Auyeung, R. C. Y., Piqué, A., “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition”, Thin Solid Films, 516 (15): 5052-5056, (2008).
  • [11] Yu, S., Li, L., Sun, Z., Zheng, H., Dong, H., Xu, D., Zhang, W., “Characteristics of Transparent Conducting W‐Doped SnO2 Thin Films Prepared by Using the Magnetron Sputtering Method”, Journal of the American Ceramic Society, 98 (4): 1121-1127, (2015).
  • [12] Okuno, T., Oshima, T., Lee, S. D., Fujita, S., “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method”, Physica Status Solidi C, 8(2): 540-542, (2011).
  • [13] İskenderoğlu, Demet, Harun Güney, and Muhammed Emin Güldüren. “Chromium–An effective dopant for engineering the structural and the optical properties of CdO nanostructures grown by SILAR method”, Optical Materials, 115: 111067, (2021).
  • [14] Liu, J., Liu, X., Zhai, Z., Jin, G., Jiang, Q., Zhao, Y., Luo, C., Quan, L., “Evaluation of depletion layer width and gas-sensing properties of antimony-doped tin oxide thin film sensors”, Sensors and Actuators B: Chemical, 220: 1354-1360, (2015).
  • [15] Batzill, M., Burst, J. M., Diebold, U., “Pure and cobalt-doped SnO2 (101) films grown by molecular beam epitaxy on Al2O3”, Thin Solid Films, 484(1-2): 132-139, (2005).
  • [16] Velusamy, P., Babu, R. R., Ramamurthi, K., Elangovan, E., Viegas, J., “Effect of La doping on the structural, optical and electrical properties of spray pyrolytically deposited CdO thin films”, Journal of Alloys and Compounds, 708, 804-812, (2017).
  • [17] Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G.,Hamilton, J.,Byrne, J.,O’Shea, K., Entezari, M.,Dionysiou, D. D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B: Environmental, 125: 331-349, (2012).
  • [18] Takagahara, T., Takeda, K., “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Physical Review B, 46(23): 15578, (1992).
  • [19] Li, Y., Yin, W., Deng, R., Chen, R., Chen, J., Yan, Q., Sun, H., Wei, S., Wu, T., “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule”, NPG Asia Materials, 4 (11): e30-e30, (2012).
  • [20] Entradas, T., Cabrita, J. F., Dalui, S., Nunes, M. R., Monteiro, O. C., Silvestre, A. J., “Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties”, Materials Chemistry and Physics, 147 (3): 563-571, (2014).
  • [21] Chun-Ming, L., Li-Mei, F., Xiao-Tao, Z., Wei-Lie, Z., “The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders”, Chinese Physics, 16 (1): 95, (2007).
  • [22] Turgut, G., Keskenler, E. F., Aydın, S., Sönmez, E., Doğan, S., Düzgün, B., Ertuğrul, M., “Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films”, Superlattices and Microstructures, 56: 107-116, (2013).
  • [23] Dugan, S., Koç, M.M. and Coşkun, B., “Structural, electrical and optical characterization of Mn doped CdO photodiodes”, Journal of Molecular Structure, 1202, 127235, (2020).
  • [24] Yetim, N.K., Aslan, N., Sarıoğlu, A., Sarı, N. and Koç, M.M., “Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers”, Journal of Materials Science: Materials in Electronics, 31(15), 12238-12248, (2020).
  • [25] İlhan, M., Koç, M.M., Coşkun, B. and Yakuphanoğlu, F., “Optical, Electrical and Photo responsive Properties of Cu2NiSnS4 Solar Detectors”, Journal of Electronic Materials, 49, 4457-4465, (2020).
  • [26] Uysal, B. Ö., Arıer, Ü. Ö. A., “Structural and optical properties of SnO2 nano films by spin-coating method”, Applied Surface Science, 350: 74-78, (2015).
  • [27] Hwang, J. D., Ho, T. H., “Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering”, Materials Science in Semiconductor Processing, 71: 396-400, (2017).
  • [28] Luo, S., Fan, J., Liu, W., Zhang, M., Song, Z., Lin, C., Wu, X., Chu, P. K., “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts”, Nanotechnology, 17(6): 1695, (2006).
  • [29] Deepa, S., Kumari, K. P., Thomas, B. Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films”, Ceramics International, 43(18): 17128-17141, (2017).
  • [30] Sangeetha, P., Sasirekha, V., Ramakrishnan, V., “Micro‐Raman investigation of tin dioxide nanostructured material based on annealing effect”, Journal of Raman Spectroscopy, 42(8): 1634-1639, (2011).
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Muhammed Emin Güldüren 0000-0002-9769-0559

Ahmet Taşer 0000-0003-4563-160X

Harun Güney 0000-0001-9877-2591

Publication Date September 1, 2022
Published in Issue Year 2022 Volume: 35 Issue: 3

Cite

APA Güldüren, M. E., Taşer, A., & Güney, H. (2022). Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method. Gazi University Journal of Science, 35(3), 1116-1127. https://doi.org/10.35378/gujs.912709
AMA Güldüren ME, Taşer A, Güney H. Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method. Gazi University Journal of Science. September 2022;35(3):1116-1127. doi:10.35378/gujs.912709
Chicago Güldüren, Muhammed Emin, Ahmet Taşer, and Harun Güney. “Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method”. Gazi University Journal of Science 35, no. 3 (September 2022): 1116-27. https://doi.org/10.35378/gujs.912709.
EndNote Güldüren ME, Taşer A, Güney H (September 1, 2022) Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method. Gazi University Journal of Science 35 3 1116–1127.
IEEE M. E. Güldüren, A. Taşer, and H. Güney, “Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method”, Gazi University Journal of Science, vol. 35, no. 3, pp. 1116–1127, 2022, doi: 10.35378/gujs.912709.
ISNAD Güldüren, Muhammed Emin et al. “Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method”. Gazi University Journal of Science 35/3 (September 2022), 1116-1127. https://doi.org/10.35378/gujs.912709.
JAMA Güldüren ME, Taşer A, Güney H. Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method. Gazi University Journal of Science. 2022;35:1116–1127.
MLA Güldüren, Muhammed Emin et al. “Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method”. Gazi University Journal of Science, vol. 35, no. 3, 2022, pp. 1116-27, doi:10.35378/gujs.912709.
Vancouver Güldüren ME, Taşer A, Güney H. Effects of Cobalt Doping on the Structural, Optical, and Electrical Properties of SnO2 Nanostructures Synthesized by SILAR Method. Gazi University Journal of Science. 2022;35(3):1116-27.