Research Article
BibTex RIS Cite
Year 2023, Volume: 36 Issue: 2, 555 - 571, 01.06.2023
https://doi.org/10.35378/gujs.1047479

Abstract

References

  • [1] Kirkland, J.J., “Techniques for High-Performance Liquid-Liquid and Ion Exchange Chromatography with Controlled Surface Porosity Column Packings”, Journal of Chromatographic Science, 7(6): 361–365, (1969).
  • [2] Cabooter, D., Lynen, F., Sandra, P., Desmet, G., “Total pore blocking as an alternative method for the on-column determination of the external porosity of packed and monolithic reversed-phase columns”, Journal of Chromatography A, 1157(1-2): 131–141, (2007).
  • [3] Alyousef, R., Alabduljabbar, H., Mohamed, A. M., Alaskar, A., Jermsittiparsert, K., Ho, L., “S. A model to develop the porosity of concrete as important mechanical property”, Smart Structures and Systems, 26(2): 147–156, (2020).
  • [4] Huang, J., Alyousef, R., Suhatril, M., Baharom, S., Alabduljabbar, H., Alaskar, A., Assilzadeh, H., “Influence of porosity and cement grade on concrete mechanical properties”, Advances in Concrete Construction, 10(5): 393–402, (2020).
  • [5] Bekkaye, T. H. L., Fahsi, B., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., Al-Zahrani, M. M., “Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory”, Computers and Concrete, 26(5): 439–450, (2020).
  • [6] Roy, D. M., Gouda, G. R., “Porosity-Strength Relation in Cementitious Materials with Very High Strengths”, Journal of the American Ceramic Society, 56(10): 549–550, (1973).
  • [7] Bachtiar, E., Tjaronge, M.W., Zulharnah, Irfan, U. R., “Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water”, Procedia Engineering, 125: 832-837, (2015).
  • [8] Kim, J. Y, Edil, T. B., Park, J. K., “Effective Porosity and Seepage Velocity in Column Tests on Compacted Clay”, Journal of Geotechnical and Geoenvironmental Engineering, 123(12): 1135-1141, (1997).
  • [9] Dores-Sousa, J.L., Terryn, H., Eeltink, S., “Morphology optimization and assessment of the performance limits of high-porosity nanostructured polymer monolithic capillary columns for proteomics analysis”, Analytica Chimica Acta, 1124: 176-183, (2020).
  • [10] Cunningham, R., Nicolas, A., Madsen, J., Fodran, E., Anagnostou, E., Sangid, M. D., Rollett, A. D., “Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V”, Materials Research Letters, 5(7): 516-525, (2017).
  • [11] Najafzadeh, M., Adeli, M. M., Zarezadeh, E., Hadi, A., “Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field”, Mechanics Based Design of Structures and Machines, 1-15, (2020).
  • [12] Zhao, C., Chen, J., Xu, Q., Wang, J., Wang, B., “Investigation on sloshing and vibration mitigation of water storage tank of AP1000”, Annals of Nuclear Energy, 90: 331-342, 0306-4549, (2016).
  • [13] Kim, Y.-W., Lee, Y.-S., “Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with an annular plate cover”, Journal of Sound and Vibration, 279(1-2): 217–235, (2005).
  • [14] Cho, J. R., Lee, H. W., Kim, K. W., “Free Vibration Analysis of Baffled Liquid-Storage Tanks by The Structural-Acoustic Finite Element Formulation”, Journal of Sound and Vibration”, 258(5), 847–866, (2002).
  • [15] Tedesco, J. W., Kostem, C. N., Kalnins, A., “Free vibration analysis of cylindrical liquid storage tanks”, Computers and Structures, 26(6): 957–964, (1987).
  • [16] Pina, C.G, Meirelles, A.J.A, “Deacidification of corn oil by solvent extraction in a perforated rotating disc column”, Journal of the American Oil Chemists' Society, 77: 553-559, (2000).
  • [17] Tsavdaridis, K. D., Faghih, F., Nikitas, N., “Assessment of Perforated Steel Beam-to-Column Connections Subjected to Cyclic Loading”, Journal of Earthquake Engineering, 18(8): 1302-1325, (2014).
  • [18] Liu, X., Yu, C., Xin, F., “Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption”, Composite Structures, 263: 113647, (2021).
  • [19] Abdelrahman, A. A., Eltaher, M. A., Kabeel, A. M., Abdraboh, A. M., Hendi, A. A. “Free and forced analysis of perforated beams”, Steel and Composite Structures, 31(5): 489-502, (2019).
  • [20] Almitani, K. H., Abdelrahman, A. A., Eltaher, M. A. “Stability of perforated nanobeams incorporating surface energy effects”, Steel and Composite Structures, 35(4): 555-566, (2020).
  • [21] Assie, A., Akbaş, Ş. D., Bashiri, A. H., Abdelrahman, A. A., Eltaher, M. A. “Vibration response of perforated thick beam under moving load”, The European Physical Journal Plus, 136(3): 1-15, (2021).
  • [22] Hassannejad, R., Hosseini, S. A., Alizadeh-Hamidi, B., “Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory”, Acta Astronautica, 178: 805-812, (2021).
  • [23] Yaylı, M. Ö., Uzun, B., Deliktaş, B., “Buckling analysis of restrained nanobeams using strain gradient elasticity”, Waves in Random and Complex Media, 1: 20, (2021).
  • [24] Uzun, B., Kafkas, U., Yaylı, M.Ö., “Stability analysis of restrained nanotubes placed in electromagnetic field”, Microsystem Technologies, 26: 3725–3736, (2020).
  • [25] Yaylı, M.Ö., “Axial vibration analysis of a Rayleigh nanorod with deformable boundaries”, Microsystem Technologies, 26(9): 3725–3736, (2020).
  • [26] Uzun, B., Civalek, Ö., Yaylı, M. Ö., “Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions”, Mechanics Based Design of Structures and Machines, 1: 20, (2020).
  • [27] Abdelrahman, A. A., Esen, I., Özarpa, C., Shaltout, R., Eltaher, M. A., Assie, A. E., “Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory”, Smart Structures and Systems, 28: 515-533, (2021).
  • [28] Jalaei, M., Civalek, O., “On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam”, International Journal of Engineering Science 143: 14-32, (2019).
  • [29] Akbas, S. D, Ersoy, H., Akgöz, B., Civalek, O., “Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method”, Mathematics, 9: 1048, (2021).
  • [30] Numanoğlu, H.M., Akgöz, B., Civalek, O., “On dynamic analysis of nanorods”, International Journal of Engineering Science 130: 33-50, (2018).
  • [31] Akgöz, B., Civalek, O., “Longitudinal vibration analysis for microbars based on strain gradient elasticity theory”, Journal of Vibration and Control 20(4): 606-616, (2014).
  • [32] Civalek, O., Uzun, B., Yaylı, M.O., Akgöz, B., “Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method”, The European Physical Journal Plus , 135: 356-381, (2020).
  • [33] Civalek, Ö., Numanoğlu, H. M., “Nonlocal finite element analysis for axial vibration of embedded love–bishop nanorods”, International Journal of Mechanical Sciences, 188: 105939, (2020).
  • [34] Uzun, B., Yaylı, M. Ö., Deliktaş, B., “Free vibration of FG nanobeam using a finite-element method”, Micro and Nano Letters, 15(1): 35-40, (2020).
  • [35] Uzun, B., Kafkas, U., Yaylı, M. Ö., “Free vibration analysis of nanotube based sensors including rotary inertia based on the Rayleigh beam and modified couple stress theories”, Microsystem Technologies, 27(5): 1913-1923, (2021).
  • [36] Karabulut, H., Ersoy, H., “Dynamic behaviors of a Two-cylinder Four-Stroke”, Gazi University Journal of Science, 25(2): 519-532, (2012).
  • [37] İpci, D., Yıldırım, B., “Free Vibration Analysis of a Functionally Graded Micro-Beam with Tapered Cross Section”, Gazi University Journal of Science Part C: Design and Technology, 9(2): 272-282, (2021).
  • [38] Reddy, J.N., “Nonlocal theories for bending, buckling and vibration of beams”, International Journal of Engineering Science, Sci. 45: 288-307, (2007).
  • [39] Kim, H. K., Kim, M. S., “Vibration of beams with generally restrained boundary conditions using Fourier series”, Journal of Sound and Vibration, 245(5), 771-784, (2001).

Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method

Year 2023, Volume: 36 Issue: 2, 555 - 571, 01.06.2023
https://doi.org/10.35378/gujs.1047479

Abstract

The presence of predictable cavities inside a structure is often preferable as it will reduce the vibration amplitude. In this article, inspired by the traditional mass attached to the beam system, in order to solve the problem of free vibration of the steel liquid storage tank with a column made of porous and perforated materials using an exact analytical continuum model is formed. The free vibration response of the mass attached column made of porous materials and holes is established by using a new analytical method known as the Fourier series with Stokes’ transform. The free vibration frequencies are obtained by using an eigen-value approximation, and the influences of the number of holes, filling ratio, porosity and other parameters on the free vibration response are explored. It is shown that an increase in the mass parameter, filling ratio and porosity parameter of the column with an attached mass system could significantly affect the free vibration response of the system.

References

  • [1] Kirkland, J.J., “Techniques for High-Performance Liquid-Liquid and Ion Exchange Chromatography with Controlled Surface Porosity Column Packings”, Journal of Chromatographic Science, 7(6): 361–365, (1969).
  • [2] Cabooter, D., Lynen, F., Sandra, P., Desmet, G., “Total pore blocking as an alternative method for the on-column determination of the external porosity of packed and monolithic reversed-phase columns”, Journal of Chromatography A, 1157(1-2): 131–141, (2007).
  • [3] Alyousef, R., Alabduljabbar, H., Mohamed, A. M., Alaskar, A., Jermsittiparsert, K., Ho, L., “S. A model to develop the porosity of concrete as important mechanical property”, Smart Structures and Systems, 26(2): 147–156, (2020).
  • [4] Huang, J., Alyousef, R., Suhatril, M., Baharom, S., Alabduljabbar, H., Alaskar, A., Assilzadeh, H., “Influence of porosity and cement grade on concrete mechanical properties”, Advances in Concrete Construction, 10(5): 393–402, (2020).
  • [5] Bekkaye, T. H. L., Fahsi, B., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., Al-Zahrani, M. M., “Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory”, Computers and Concrete, 26(5): 439–450, (2020).
  • [6] Roy, D. M., Gouda, G. R., “Porosity-Strength Relation in Cementitious Materials with Very High Strengths”, Journal of the American Ceramic Society, 56(10): 549–550, (1973).
  • [7] Bachtiar, E., Tjaronge, M.W., Zulharnah, Irfan, U. R., “Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water”, Procedia Engineering, 125: 832-837, (2015).
  • [8] Kim, J. Y, Edil, T. B., Park, J. K., “Effective Porosity and Seepage Velocity in Column Tests on Compacted Clay”, Journal of Geotechnical and Geoenvironmental Engineering, 123(12): 1135-1141, (1997).
  • [9] Dores-Sousa, J.L., Terryn, H., Eeltink, S., “Morphology optimization and assessment of the performance limits of high-porosity nanostructured polymer monolithic capillary columns for proteomics analysis”, Analytica Chimica Acta, 1124: 176-183, (2020).
  • [10] Cunningham, R., Nicolas, A., Madsen, J., Fodran, E., Anagnostou, E., Sangid, M. D., Rollett, A. D., “Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V”, Materials Research Letters, 5(7): 516-525, (2017).
  • [11] Najafzadeh, M., Adeli, M. M., Zarezadeh, E., Hadi, A., “Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field”, Mechanics Based Design of Structures and Machines, 1-15, (2020).
  • [12] Zhao, C., Chen, J., Xu, Q., Wang, J., Wang, B., “Investigation on sloshing and vibration mitigation of water storage tank of AP1000”, Annals of Nuclear Energy, 90: 331-342, 0306-4549, (2016).
  • [13] Kim, Y.-W., Lee, Y.-S., “Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with an annular plate cover”, Journal of Sound and Vibration, 279(1-2): 217–235, (2005).
  • [14] Cho, J. R., Lee, H. W., Kim, K. W., “Free Vibration Analysis of Baffled Liquid-Storage Tanks by The Structural-Acoustic Finite Element Formulation”, Journal of Sound and Vibration”, 258(5), 847–866, (2002).
  • [15] Tedesco, J. W., Kostem, C. N., Kalnins, A., “Free vibration analysis of cylindrical liquid storage tanks”, Computers and Structures, 26(6): 957–964, (1987).
  • [16] Pina, C.G, Meirelles, A.J.A, “Deacidification of corn oil by solvent extraction in a perforated rotating disc column”, Journal of the American Oil Chemists' Society, 77: 553-559, (2000).
  • [17] Tsavdaridis, K. D., Faghih, F., Nikitas, N., “Assessment of Perforated Steel Beam-to-Column Connections Subjected to Cyclic Loading”, Journal of Earthquake Engineering, 18(8): 1302-1325, (2014).
  • [18] Liu, X., Yu, C., Xin, F., “Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption”, Composite Structures, 263: 113647, (2021).
  • [19] Abdelrahman, A. A., Eltaher, M. A., Kabeel, A. M., Abdraboh, A. M., Hendi, A. A. “Free and forced analysis of perforated beams”, Steel and Composite Structures, 31(5): 489-502, (2019).
  • [20] Almitani, K. H., Abdelrahman, A. A., Eltaher, M. A. “Stability of perforated nanobeams incorporating surface energy effects”, Steel and Composite Structures, 35(4): 555-566, (2020).
  • [21] Assie, A., Akbaş, Ş. D., Bashiri, A. H., Abdelrahman, A. A., Eltaher, M. A. “Vibration response of perforated thick beam under moving load”, The European Physical Journal Plus, 136(3): 1-15, (2021).
  • [22] Hassannejad, R., Hosseini, S. A., Alizadeh-Hamidi, B., “Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory”, Acta Astronautica, 178: 805-812, (2021).
  • [23] Yaylı, M. Ö., Uzun, B., Deliktaş, B., “Buckling analysis of restrained nanobeams using strain gradient elasticity”, Waves in Random and Complex Media, 1: 20, (2021).
  • [24] Uzun, B., Kafkas, U., Yaylı, M.Ö., “Stability analysis of restrained nanotubes placed in electromagnetic field”, Microsystem Technologies, 26: 3725–3736, (2020).
  • [25] Yaylı, M.Ö., “Axial vibration analysis of a Rayleigh nanorod with deformable boundaries”, Microsystem Technologies, 26(9): 3725–3736, (2020).
  • [26] Uzun, B., Civalek, Ö., Yaylı, M. Ö., “Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions”, Mechanics Based Design of Structures and Machines, 1: 20, (2020).
  • [27] Abdelrahman, A. A., Esen, I., Özarpa, C., Shaltout, R., Eltaher, M. A., Assie, A. E., “Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory”, Smart Structures and Systems, 28: 515-533, (2021).
  • [28] Jalaei, M., Civalek, O., “On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam”, International Journal of Engineering Science 143: 14-32, (2019).
  • [29] Akbas, S. D, Ersoy, H., Akgöz, B., Civalek, O., “Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method”, Mathematics, 9: 1048, (2021).
  • [30] Numanoğlu, H.M., Akgöz, B., Civalek, O., “On dynamic analysis of nanorods”, International Journal of Engineering Science 130: 33-50, (2018).
  • [31] Akgöz, B., Civalek, O., “Longitudinal vibration analysis for microbars based on strain gradient elasticity theory”, Journal of Vibration and Control 20(4): 606-616, (2014).
  • [32] Civalek, O., Uzun, B., Yaylı, M.O., Akgöz, B., “Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method”, The European Physical Journal Plus , 135: 356-381, (2020).
  • [33] Civalek, Ö., Numanoğlu, H. M., “Nonlocal finite element analysis for axial vibration of embedded love–bishop nanorods”, International Journal of Mechanical Sciences, 188: 105939, (2020).
  • [34] Uzun, B., Yaylı, M. Ö., Deliktaş, B., “Free vibration of FG nanobeam using a finite-element method”, Micro and Nano Letters, 15(1): 35-40, (2020).
  • [35] Uzun, B., Kafkas, U., Yaylı, M. Ö., “Free vibration analysis of nanotube based sensors including rotary inertia based on the Rayleigh beam and modified couple stress theories”, Microsystem Technologies, 27(5): 1913-1923, (2021).
  • [36] Karabulut, H., Ersoy, H., “Dynamic behaviors of a Two-cylinder Four-Stroke”, Gazi University Journal of Science, 25(2): 519-532, (2012).
  • [37] İpci, D., Yıldırım, B., “Free Vibration Analysis of a Functionally Graded Micro-Beam with Tapered Cross Section”, Gazi University Journal of Science Part C: Design and Technology, 9(2): 272-282, (2021).
  • [38] Reddy, J.N., “Nonlocal theories for bending, buckling and vibration of beams”, International Journal of Engineering Science, Sci. 45: 288-307, (2007).
  • [39] Kim, H. K., Kim, M. S., “Vibration of beams with generally restrained boundary conditions using Fourier series”, Journal of Sound and Vibration, 245(5), 771-784, (2001).
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Civil Engineering
Authors

Togay Küpeli 0000-0002-5921-8667

Yakup Harun Çavuş 0000-0002-6607-9650

Büşra Uzun 0000-0002-7636-7170

Mustafa Özgür Yaylı 0000-0003-2231-170X

Publication Date June 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 2

Cite

APA Küpeli, T., Çavuş, Y. H., Uzun, B., Yaylı, M. Ö. (2023). Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method. Gazi University Journal of Science, 36(2), 555-571. https://doi.org/10.35378/gujs.1047479
AMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method. Gazi University Journal of Science. June 2023;36(2):555-571. doi:10.35378/gujs.1047479
Chicago Küpeli, Togay, Yakup Harun Çavuş, Büşra Uzun, and Mustafa Özgür Yaylı. “Free Vibration Response of a Steel Liquid Storage Tank With Porous and Perforated Columns via an Exact Continuum Method”. Gazi University Journal of Science 36, no. 2 (June 2023): 555-71. https://doi.org/10.35378/gujs.1047479.
EndNote Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ (June 1, 2023) Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method. Gazi University Journal of Science 36 2 555–571.
IEEE T. Küpeli, Y. H. Çavuş, B. Uzun, and M. Ö. Yaylı, “Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method”, Gazi University Journal of Science, vol. 36, no. 2, pp. 555–571, 2023, doi: 10.35378/gujs.1047479.
ISNAD Küpeli, Togay et al. “Free Vibration Response of a Steel Liquid Storage Tank With Porous and Perforated Columns via an Exact Continuum Method”. Gazi University Journal of Science 36/2 (June 2023), 555-571. https://doi.org/10.35378/gujs.1047479.
JAMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method. Gazi University Journal of Science. 2023;36:555–571.
MLA Küpeli, Togay et al. “Free Vibration Response of a Steel Liquid Storage Tank With Porous and Perforated Columns via an Exact Continuum Method”. Gazi University Journal of Science, vol. 36, no. 2, 2023, pp. 555-71, doi:10.35378/gujs.1047479.
Vancouver Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. Free Vibration Response of a Steel Liquid Storage Tank with Porous and Perforated Columns via an Exact Continuum Method. Gazi University Journal of Science. 2023;36(2):555-71.