BibTex RIS Cite

Heat Shock Proteins and Heat Shock Response in Plants

Year 2009, Volume: 22 Issue: 2, 67 - 75, 22.03.2010

Abstract

Prokaryotic and eukaryotic cells respond potentially harmful stimulations like heat stress by inducing synthesis of stress proteins so called heat shock proteins (Hsps) besides other metabolites. Heat stress response is a reaction when tissues and cells of an organism were exposed to sudden heat stress and is characterized by temporary expression of Hsps. Primary protein structures of Hsps and heat shock response are highly conserved in every organism which has been sought. Therefore it has been considered that Hsps might be closely involved in protection of organisms against heat stress and keeping homeostasis. Most of Hsps are known as molecular chaperons whose biological role is to maintain and shield the unfolded state of newly synthesized proteins thus preventing them from misfolding or aggregating. Here it was summarized the significance of Hsps and heat shock response in plants.

 Key Words: Heat stress, Heat shock proteins, Plants, Thermal tolerance.

References

  • [1] Ahn, Y.J., Claussen, K., Zimmerman, J.L., “Genotypic differences in the heat shock response and thermotolerance in four potato cultivars”, Plant Science, 166: 901-911 (2004).
  • [2] Ang, D., Liberek, K., Skowyra, D., Zylicz, M., Georgopoulos, C., “Biological role and regulation of the universally conserved heat shock proteins”, The Journal of Biological Chemistry, 266 (36): 24233-24236 (1991).
  • [3] Araujo, J.L., Rumjanck, N.G., Pinhero, M.M., “Small heat shock proteins genes are differentially expressed in distinct varieties of common bean”, Braz J. Plant Physiol., 15(1): 33-41 (2003).
  • [4] Blumenthal, C., Bekes, F., Wrigley, C.W., Barlow, E.W.R., “The acquisition and maintenance of thermotolerance in Australian wheats”, Aust. J. Plant Physiol., 17: 37-47 (1990).
  • [5] Burke, J.J., “Identification of genetic diversity and mutations in higher plant acquired thermotolerance”, Physiologia Plantarum, 112: 167-170 (2001).
  • [6] Chen, H.H., Shen, Z.Y., Li, P.H., “Adaptability of crop plants to high temperature stress”, Crop Science, 22: 719-725 (1982).
  • [7] Chen, Q., Lauzon, L.M., DeRocher, A.E., Vierling, E., “Accumulation, stability and localization of a major chloroplast heat shock protein”, The Journal of Cell Biology, 110: 1873-1883 (1990).
  • [8] Clarke, A.K., Critchley, C., “Synthesis of early heat shock proteins in young leaves of barley and sorghum”, Plant Physiol., 94: 567-576 (1990).
  • [9] Cooper, P., David Ho, T.H., “Heat shock proteins in maize”, Plant Physiol, 71: 215-222 (1983).
  • [10] Dash, S., Mohanty, N., “Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity”, J. Plant Physiol., 159: 49-59 (2002).
  • [11] Dell’Aquila, A., “Effect of combined salt and heat treatments on germination and heat-shock protein synthesis in lentil seeds”, Biologia Plantarum, 43(4): 591-594 (2000).
  • [12] Downs, C.A., Heckathorn, S.A., Bryan, J.K., Coleman, J.S., “The methionine-rich low molecular weight chloroplast heat shock protein: Evolutionary conservation and accumulation in relation to thermotolerance”, American Journal of Botany, 85(2): 175-183 (1998).
  • [13] Feder, E.M., Hofman G.E., “Heat-shock proteins, molecular chaperons, and the stress response”, Annual Review of Physiology, 61: 243-282 (1999).
  • [14] Feder, E.M., “Organismal, ecological, and evolutionary aspects of heat shock proteins and the stress response: established conclusions and unresolved issues”, American Zoologist, 39(6): 857-864 (1999).
  • [15] Glatz, A., Vass, I., Los, D., Vigh, L., “The Synechocystis model of stress: from molecular chaperones to membranes”, Plant Physiol Biochem., 37(1): 1-12 (1999).
  • [16] Hartl, F.U., Martin, J., Neupert, W., “Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60”, Annu. Rev. Biophys. Biomol. Struct., 21: 293-322 (1992).
  • [17] Heckathorn, S.A., Downs, C.A., Coleman, J.S., “Small heat shock proteins protect electron transport in chloroplast and mitochondria during stress”, American Zoologist, 39(6): 865-8876 (1999).
  • [18] Helm, K.W., Peterson, N.S., Abernethy, R.H., “Heat shock response of germinating embryos of wheat, Effects of imbibition time and seed vigor”, Plant Physiol, 90: 598-605 (1989).
  • [19] Hendrick, J.P., Hartl, F.U., “Molecular chaperone functions of heat-shock proteins”, Annu. Rev. Biochem, 62: 349-384 (1993).
  • [20] Iba, K., “Acclimative response to temperature stress in higher plants: Approaches of genetic engineering for temperature tolerance”, Annu. Rev. Plant. Biol., 53: 225-245 (2002).
  • [21] Đbrahim, A.M.H., Quick, J.S., “Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability”, Crop. Sci., 41: 1405-1407 (2001).
  • [22] Jinn, T., Wu, S., Yeh, C., Hsieh, M., Yeh, Y., Chen, Y., Lin, C., “Immunological kinship of class I low molecular weigth heat shock proteins and thermostabilization of soluble proteins in vitro among plants”, Plant Cell Physiol., 34(7): 1055- 1062 (1993).
  • [23] Kadıoğlu, A., “Bitki Fizyolojisi”, Esen Ofset, Trabzon, 217p. (2004).
  • [24] Krishna, P., “Plant responses to abiotic stress”, Springer, Berlin, 73-93 (2004).
  • [25] Krishnan, M., Nguyen, H.T., Burke, J.J., “Heat shock protein synthesis and thermal tolerance in wheat”, Plant Physiol, 90: 140-145 (1989).
  • [26] Ledesma, N.A., Kawabata, S., “Effect of high temperature on protein expression in strawberry plants”, Biologia Plantarum, 48(1): 73-79 (2004).
  • [27] Lee, U., Ripflorido, I., Hong, S., Lurkindale, J., Waters, E., Vierling, E., “The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development”, The Plant Journal, 49: 115-127 (2007).
  • [28] Levitt, J., “Responses of plants to environmental stresses: Chilling, freezing and high temperature stresses”, 2nd Ed., Academic Press Inc., New York, I: 497 (1980).
  • [29] Lin, C.Y., Roberts, J.K., Key, J.L., “Acquisition of thermotolerance in soybean seedlings”, Plant Physiol., 74: 152-160 (1984).
  • [30] Lindquist, S., Craig, E.A., “The heat shock proteins”, Annu. Rev. Genet., 22: 631-677 (1988).
  • [31] Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.J., Marmiroli, N., “Molecular genetics of heat tolerance and heat shock proteins in cereals”, Plant Molecular Biology, 48: 667-681 (2002).
  • [32] Majaul, T., Bancel, E., Triboi, E., Ben Hamida, J., Branlard, G., “Proteomic analysis of heat responsive proteins from non-prolamins fraction”, Proteomics, 4(2): 505-513 (2004).
  • [33] Manitasevic, S., Dunderski, J., Matica, G., Tucic, B., “Seasonal variation in heat shock proteins Hsp70 and Hsp90 expression in an exposed and shaded habitat of Iris pumila” Plant, Cell and Environment, 30: 1-11 (2007).
  • [34] Mariamma, M., Muthukumar, B., Veluthambi, K., Gnanam, A., “Effects of high temperature stress on the expression of low molecular weight heat shock proteins in rice leaves”, Journal of Plant Physiology, 151: 763-765 (1997).
  • [35] Myouga, F., Motohashi, R., Kuromori, T., Nagata, N., Shinozaki, K., “An Arabidopsis chloroplasttargeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat stress response”, The Plant Journal, 48: 249- 260 (2006).
  • [36] Necchi, A., Pogna, N.E., Mapelli, S., “Early and late heat shock proteins in wheat and other cereal species”, Plant Physiol, 84: 1378-1384 (1987).
  • [37] Nguyen, H.T., Krishnan, M., Burke, J.J., Porter, D.R., Vierling, R.A., “Environmental tolerance in plants: Biochemical and biophysical mechanisms”, NATO, ASI Series, Springer-Verlag, Berlin, 319- 330 (1989).
  • [38] Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yashimura, K., Shigeoka, S., “Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress” The Plant Journal, 48: 535-547 (2006).
  • [39] Nover, L., Scharf, K., “Synthesis, modification and structural binding of heat-shock proteins in tomato cell cultures”, Eur. J. Biochem., 139: 303-313 (1984).
  • [40] Nover, L., Neumann, D., Scharf, K.D., “Heat shock and other stress response systems of plants”, Springer, Newyork, 155 p. (1989).
  • [41] Nover, L., “Heat shock response”, CRC Press Inc., Florida, 509p. (1991).
  • [42] Ray, P.K., “Stress genes and species survival”, Molecular and Cellular Biochemistry, 196: 117- 123 (1999).
  • [43] Skylas, D.J., Cordwell, S.J., Hains, P.G., Larsen, M.R., Basseal, D.J., Walsh, B.J., Blumenthal, C., Rathmell, Copeland, L., Wrigley, C.W., “Heat shock of wheat during grain filling: Proteins associated with heat tolerance”, Journal of Cereal Science, 35: 175-188 (2002).
  • [44] Soransen, J.G., Kristensen, T.N., Loeschcke, V., “The evolutionary and ecological role of heat shock proteins”, Ecology Letters, 6: 1025-1037 (2003).
  • [45] Sun, W., Montagu, M.V., “Small heat shock proteins and stress tolerance in plants”, Biochemica et Biophysica Acta., 1577: 1-9 (2002).
  • [46] Taiz, L., Zaiger, E., “Plant Physiology”, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, 792 p. (1998).
  • [47] Treglia, A., Spano, G., Rampino, P., Giangrande, E., Nocco, G., Mita, G., Fonzo, N., Perrotta, C., “Identification by in vitro translation and Northern Blot analysis of heat shock mRNAs isolated from wheat seeds exposed to different temperatures during ripening”, Journal of Cereal Science, 30: 33-38 (1999).
  • [48] Treshow, M., “Environment and plant response”, Mcgraw-Hill Company, 421p. (1970). [49] Vierling, R.A., Nguyen, H.T., “Heat-shock protein synthesis and accumulation in diploid wheat”, Crop. Sci., 30:1337-1342 (1990).
  • [50] Vierling, R., Nguyen, H.T., “Heat-shock gene expression in diploid wheat genotypes differing in thermal tolerance”, Crop Sci, 32: 370-377 (1992).
  • [51] Vierling, E., “The small heat shock proteins in plants are members of an ancient family of heat induced proteins”, Acta Physiologiae Plantarum, 19 (4): 539-547 (1997).
  • [52] Vinocur, B., Altman, A., “Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations”, Current Opinion in Biotechnology, 16: 123-132 (2005).
  • [53] Wang, W., Vinocur, B., Shoseyov, O., Altman, A., “Role of plant heat shock proteins and molecular chaperons in the abiotic stress response”, TRENDS in Plant Science, 9(5): 1360-1385 (2004).
  • [54] Waters, E.R., Lee, G.J., Vierling, E., “Evolution, structure and function of the small heat shock proteins in plants”, Journal of Experimental Botany, 47 (296): 325-338 (1996).
  • [55] Weng, J., Nguyen, H.T., “Differences in the heatshock response between thermotolerant and thermosusceptible cultivars of hexaploid wheat”, Theor Appl. Genet., 84: 941-946 (1992).
  • [56] Young, R.A., Elliott, T.J., “Stress proteins, infection and immune surveillance”, Cell, 59: 5-8 (2002).
  • [57] Yücel, M., Burke, J.J., Nguyen, H.T., “Inhibition and recovery of photosystem II following exposure of wheat to heat shock”, Environmental and Experimental Botany, 32(2): 125-135 (1991).
  • [58] Zivy, M., “Genetic variability fot heat shock proteins in common wheat”, Theor Appl. Genet, 74: 209-213 (1987).
  • [59] Waters, E.R., Vierling, E., “Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein”, PNAS, 96(25): 14394-14399 (1999).
  • [60] Lohmann, C., Schumacher, G.E., Wunderlich, M., Schöffl, F., “Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis”, Mol Gen Genomics, 271: 11-21 (2004).
  • [61] Vierstra, R.D., “The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins”, TRENDS in Plant Science, 8 (3): 135-142 (2003).
Year 2009, Volume: 22 Issue: 2, 67 - 75, 22.03.2010

Abstract

References

  • [1] Ahn, Y.J., Claussen, K., Zimmerman, J.L., “Genotypic differences in the heat shock response and thermotolerance in four potato cultivars”, Plant Science, 166: 901-911 (2004).
  • [2] Ang, D., Liberek, K., Skowyra, D., Zylicz, M., Georgopoulos, C., “Biological role and regulation of the universally conserved heat shock proteins”, The Journal of Biological Chemistry, 266 (36): 24233-24236 (1991).
  • [3] Araujo, J.L., Rumjanck, N.G., Pinhero, M.M., “Small heat shock proteins genes are differentially expressed in distinct varieties of common bean”, Braz J. Plant Physiol., 15(1): 33-41 (2003).
  • [4] Blumenthal, C., Bekes, F., Wrigley, C.W., Barlow, E.W.R., “The acquisition and maintenance of thermotolerance in Australian wheats”, Aust. J. Plant Physiol., 17: 37-47 (1990).
  • [5] Burke, J.J., “Identification of genetic diversity and mutations in higher plant acquired thermotolerance”, Physiologia Plantarum, 112: 167-170 (2001).
  • [6] Chen, H.H., Shen, Z.Y., Li, P.H., “Adaptability of crop plants to high temperature stress”, Crop Science, 22: 719-725 (1982).
  • [7] Chen, Q., Lauzon, L.M., DeRocher, A.E., Vierling, E., “Accumulation, stability and localization of a major chloroplast heat shock protein”, The Journal of Cell Biology, 110: 1873-1883 (1990).
  • [8] Clarke, A.K., Critchley, C., “Synthesis of early heat shock proteins in young leaves of barley and sorghum”, Plant Physiol., 94: 567-576 (1990).
  • [9] Cooper, P., David Ho, T.H., “Heat shock proteins in maize”, Plant Physiol, 71: 215-222 (1983).
  • [10] Dash, S., Mohanty, N., “Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity”, J. Plant Physiol., 159: 49-59 (2002).
  • [11] Dell’Aquila, A., “Effect of combined salt and heat treatments on germination and heat-shock protein synthesis in lentil seeds”, Biologia Plantarum, 43(4): 591-594 (2000).
  • [12] Downs, C.A., Heckathorn, S.A., Bryan, J.K., Coleman, J.S., “The methionine-rich low molecular weight chloroplast heat shock protein: Evolutionary conservation and accumulation in relation to thermotolerance”, American Journal of Botany, 85(2): 175-183 (1998).
  • [13] Feder, E.M., Hofman G.E., “Heat-shock proteins, molecular chaperons, and the stress response”, Annual Review of Physiology, 61: 243-282 (1999).
  • [14] Feder, E.M., “Organismal, ecological, and evolutionary aspects of heat shock proteins and the stress response: established conclusions and unresolved issues”, American Zoologist, 39(6): 857-864 (1999).
  • [15] Glatz, A., Vass, I., Los, D., Vigh, L., “The Synechocystis model of stress: from molecular chaperones to membranes”, Plant Physiol Biochem., 37(1): 1-12 (1999).
  • [16] Hartl, F.U., Martin, J., Neupert, W., “Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60”, Annu. Rev. Biophys. Biomol. Struct., 21: 293-322 (1992).
  • [17] Heckathorn, S.A., Downs, C.A., Coleman, J.S., “Small heat shock proteins protect electron transport in chloroplast and mitochondria during stress”, American Zoologist, 39(6): 865-8876 (1999).
  • [18] Helm, K.W., Peterson, N.S., Abernethy, R.H., “Heat shock response of germinating embryos of wheat, Effects of imbibition time and seed vigor”, Plant Physiol, 90: 598-605 (1989).
  • [19] Hendrick, J.P., Hartl, F.U., “Molecular chaperone functions of heat-shock proteins”, Annu. Rev. Biochem, 62: 349-384 (1993).
  • [20] Iba, K., “Acclimative response to temperature stress in higher plants: Approaches of genetic engineering for temperature tolerance”, Annu. Rev. Plant. Biol., 53: 225-245 (2002).
  • [21] Đbrahim, A.M.H., Quick, J.S., “Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability”, Crop. Sci., 41: 1405-1407 (2001).
  • [22] Jinn, T., Wu, S., Yeh, C., Hsieh, M., Yeh, Y., Chen, Y., Lin, C., “Immunological kinship of class I low molecular weigth heat shock proteins and thermostabilization of soluble proteins in vitro among plants”, Plant Cell Physiol., 34(7): 1055- 1062 (1993).
  • [23] Kadıoğlu, A., “Bitki Fizyolojisi”, Esen Ofset, Trabzon, 217p. (2004).
  • [24] Krishna, P., “Plant responses to abiotic stress”, Springer, Berlin, 73-93 (2004).
  • [25] Krishnan, M., Nguyen, H.T., Burke, J.J., “Heat shock protein synthesis and thermal tolerance in wheat”, Plant Physiol, 90: 140-145 (1989).
  • [26] Ledesma, N.A., Kawabata, S., “Effect of high temperature on protein expression in strawberry plants”, Biologia Plantarum, 48(1): 73-79 (2004).
  • [27] Lee, U., Ripflorido, I., Hong, S., Lurkindale, J., Waters, E., Vierling, E., “The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development”, The Plant Journal, 49: 115-127 (2007).
  • [28] Levitt, J., “Responses of plants to environmental stresses: Chilling, freezing and high temperature stresses”, 2nd Ed., Academic Press Inc., New York, I: 497 (1980).
  • [29] Lin, C.Y., Roberts, J.K., Key, J.L., “Acquisition of thermotolerance in soybean seedlings”, Plant Physiol., 74: 152-160 (1984).
  • [30] Lindquist, S., Craig, E.A., “The heat shock proteins”, Annu. Rev. Genet., 22: 631-677 (1988).
  • [31] Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.J., Marmiroli, N., “Molecular genetics of heat tolerance and heat shock proteins in cereals”, Plant Molecular Biology, 48: 667-681 (2002).
  • [32] Majaul, T., Bancel, E., Triboi, E., Ben Hamida, J., Branlard, G., “Proteomic analysis of heat responsive proteins from non-prolamins fraction”, Proteomics, 4(2): 505-513 (2004).
  • [33] Manitasevic, S., Dunderski, J., Matica, G., Tucic, B., “Seasonal variation in heat shock proteins Hsp70 and Hsp90 expression in an exposed and shaded habitat of Iris pumila” Plant, Cell and Environment, 30: 1-11 (2007).
  • [34] Mariamma, M., Muthukumar, B., Veluthambi, K., Gnanam, A., “Effects of high temperature stress on the expression of low molecular weight heat shock proteins in rice leaves”, Journal of Plant Physiology, 151: 763-765 (1997).
  • [35] Myouga, F., Motohashi, R., Kuromori, T., Nagata, N., Shinozaki, K., “An Arabidopsis chloroplasttargeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat stress response”, The Plant Journal, 48: 249- 260 (2006).
  • [36] Necchi, A., Pogna, N.E., Mapelli, S., “Early and late heat shock proteins in wheat and other cereal species”, Plant Physiol, 84: 1378-1384 (1987).
  • [37] Nguyen, H.T., Krishnan, M., Burke, J.J., Porter, D.R., Vierling, R.A., “Environmental tolerance in plants: Biochemical and biophysical mechanisms”, NATO, ASI Series, Springer-Verlag, Berlin, 319- 330 (1989).
  • [38] Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yashimura, K., Shigeoka, S., “Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress” The Plant Journal, 48: 535-547 (2006).
  • [39] Nover, L., Scharf, K., “Synthesis, modification and structural binding of heat-shock proteins in tomato cell cultures”, Eur. J. Biochem., 139: 303-313 (1984).
  • [40] Nover, L., Neumann, D., Scharf, K.D., “Heat shock and other stress response systems of plants”, Springer, Newyork, 155 p. (1989).
  • [41] Nover, L., “Heat shock response”, CRC Press Inc., Florida, 509p. (1991).
  • [42] Ray, P.K., “Stress genes and species survival”, Molecular and Cellular Biochemistry, 196: 117- 123 (1999).
  • [43] Skylas, D.J., Cordwell, S.J., Hains, P.G., Larsen, M.R., Basseal, D.J., Walsh, B.J., Blumenthal, C., Rathmell, Copeland, L., Wrigley, C.W., “Heat shock of wheat during grain filling: Proteins associated with heat tolerance”, Journal of Cereal Science, 35: 175-188 (2002).
  • [44] Soransen, J.G., Kristensen, T.N., Loeschcke, V., “The evolutionary and ecological role of heat shock proteins”, Ecology Letters, 6: 1025-1037 (2003).
  • [45] Sun, W., Montagu, M.V., “Small heat shock proteins and stress tolerance in plants”, Biochemica et Biophysica Acta., 1577: 1-9 (2002).
  • [46] Taiz, L., Zaiger, E., “Plant Physiology”, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, 792 p. (1998).
  • [47] Treglia, A., Spano, G., Rampino, P., Giangrande, E., Nocco, G., Mita, G., Fonzo, N., Perrotta, C., “Identification by in vitro translation and Northern Blot analysis of heat shock mRNAs isolated from wheat seeds exposed to different temperatures during ripening”, Journal of Cereal Science, 30: 33-38 (1999).
  • [48] Treshow, M., “Environment and plant response”, Mcgraw-Hill Company, 421p. (1970). [49] Vierling, R.A., Nguyen, H.T., “Heat-shock protein synthesis and accumulation in diploid wheat”, Crop. Sci., 30:1337-1342 (1990).
  • [50] Vierling, R., Nguyen, H.T., “Heat-shock gene expression in diploid wheat genotypes differing in thermal tolerance”, Crop Sci, 32: 370-377 (1992).
  • [51] Vierling, E., “The small heat shock proteins in plants are members of an ancient family of heat induced proteins”, Acta Physiologiae Plantarum, 19 (4): 539-547 (1997).
  • [52] Vinocur, B., Altman, A., “Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations”, Current Opinion in Biotechnology, 16: 123-132 (2005).
  • [53] Wang, W., Vinocur, B., Shoseyov, O., Altman, A., “Role of plant heat shock proteins and molecular chaperons in the abiotic stress response”, TRENDS in Plant Science, 9(5): 1360-1385 (2004).
  • [54] Waters, E.R., Lee, G.J., Vierling, E., “Evolution, structure and function of the small heat shock proteins in plants”, Journal of Experimental Botany, 47 (296): 325-338 (1996).
  • [55] Weng, J., Nguyen, H.T., “Differences in the heatshock response between thermotolerant and thermosusceptible cultivars of hexaploid wheat”, Theor Appl. Genet., 84: 941-946 (1992).
  • [56] Young, R.A., Elliott, T.J., “Stress proteins, infection and immune surveillance”, Cell, 59: 5-8 (2002).
  • [57] Yücel, M., Burke, J.J., Nguyen, H.T., “Inhibition and recovery of photosystem II following exposure of wheat to heat shock”, Environmental and Experimental Botany, 32(2): 125-135 (1991).
  • [58] Zivy, M., “Genetic variability fot heat shock proteins in common wheat”, Theor Appl. Genet, 74: 209-213 (1987).
  • [59] Waters, E.R., Vierling, E., “Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein”, PNAS, 96(25): 14394-14399 (1999).
  • [60] Lohmann, C., Schumacher, G.E., Wunderlich, M., Schöffl, F., “Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis”, Mol Gen Genomics, 271: 11-21 (2004).
  • [61] Vierstra, R.D., “The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins”, TRENDS in Plant Science, 8 (3): 135-142 (2003).
There are 60 citations in total.

Details

Primary Language English
Journal Section Biology
Authors

Banu Efeoğlu This is me

Publication Date March 22, 2010
Published in Issue Year 2009 Volume: 22 Issue: 2

Cite

APA Efeoğlu, B. (2010). Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science, 22(2), 67-75.
AMA Efeoğlu B. Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science. March 2010;22(2):67-75.
Chicago Efeoğlu, Banu. “Heat Shock Proteins and Heat Shock Response in Plants”. Gazi University Journal of Science 22, no. 2 (March 2010): 67-75.
EndNote Efeoğlu B (March 1, 2010) Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science 22 2 67–75.
IEEE B. Efeoğlu, “Heat Shock Proteins and Heat Shock Response in Plants”, Gazi University Journal of Science, vol. 22, no. 2, pp. 67–75, 2010.
ISNAD Efeoğlu, Banu. “Heat Shock Proteins and Heat Shock Response in Plants”. Gazi University Journal of Science 22/2 (March 2010), 67-75.
JAMA Efeoğlu B. Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science. 2010;22:67–75.
MLA Efeoğlu, Banu. “Heat Shock Proteins and Heat Shock Response in Plants”. Gazi University Journal of Science, vol. 22, no. 2, 2010, pp. 67-75.
Vancouver Efeoğlu B. Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science. 2010;22(2):67-75.