BibTex RIS Cite

Characterization and Extendability of P k Sets For k=3(4)

Year 2010, Volume: 23 Issue: 3, 295 - 297, 06.07.2010

Abstract

ABSTRACT

In this paper the characterization of certain families of the Pk   sets for k=3(4) are given, and it is shown that some of them can not be extended.

 

Key Words: Diophantine Equation, Congruence, Legendre Symbol

References

  • Dickson, L. E., “History of the theory of numbers”, Chelsea New York, 2: Sayfa no (1966).
  • Baker A. and Davenport H., “The equations x2− = y2 and 8x− Math. Oxford Ser., 2(3):129-137 (1969) = − z2”, Quart. J.
  • Kanagasababathy P. and Ponnuduraı, T. “The Simultaneous y233 −3 Math.Oxford Ser, 26(3): 275-278 (1975). x2= −”, Quart. J. − ”, Quart. J.
  • Heichelheim, P, “The study of positive integers (a b such that ab + is a square. Fibonacci ,) such that ab + is a square. Fibonacci Quatr., 17: 269-274 (1979).
  • Thamotherampillai, N., “The set of numbers {1 2 7}”,Bulletin Calcutta Math. Soc. 72:195- (1980).
  • Mohanty S.P. and Ramasamy, A.M.S. “The simultaneous Diophantine equations 5y− x =x and 2y+ = + = z2” J.Number Theory, 18: 356-359 (1984).
  • Mohanty S.P. and Ramasamy A.M.S., The Characteristic number of two simultaneous Pell’s equations and it’s application. Simon Stevin”, A Quarterly J.P. and Applied Math., 59: 203-214 (1985)
  • Brown, E. “Sets in which xy+ k is always a square. Mathematics of Comp.”, 613-620 (1985). Altindis, H., “On P j2
  • Calcutta”, Mathematical Society, 86(4): 305 - 306. (1994).
  • Dujella, A., “On the size of Diophantine m tuples”, Math. Proc. Cambridge Philos Soc., :23-33 (2002).
  • Dujella A.and Luca, F., “Diophantine m tuples for primes”. Intern. Math. Research Notices :2913-2940 (2005).
  • Dujella A. and. Ramasamy, A. M. S, “Fibonacci numbers and sets with the property D (4)”, Bull. Belg. Math. Soc., Simon Stevin, 12:401-412 (2005).

Characterization and Extendability of P Sets For k ≡ k

Year 2010, Volume: 23 Issue: 3, 295 - 297, 06.07.2010

Abstract

References

  • Dickson, L. E., “History of the theory of numbers”, Chelsea New York, 2: Sayfa no (1966).
  • Baker A. and Davenport H., “The equations x2− = y2 and 8x− Math. Oxford Ser., 2(3):129-137 (1969) = − z2”, Quart. J.
  • Kanagasababathy P. and Ponnuduraı, T. “The Simultaneous y233 −3 Math.Oxford Ser, 26(3): 275-278 (1975). x2= −”, Quart. J. − ”, Quart. J.
  • Heichelheim, P, “The study of positive integers (a b such that ab + is a square. Fibonacci ,) such that ab + is a square. Fibonacci Quatr., 17: 269-274 (1979).
  • Thamotherampillai, N., “The set of numbers {1 2 7}”,Bulletin Calcutta Math. Soc. 72:195- (1980).
  • Mohanty S.P. and Ramasamy, A.M.S. “The simultaneous Diophantine equations 5y− x =x and 2y+ = + = z2” J.Number Theory, 18: 356-359 (1984).
  • Mohanty S.P. and Ramasamy A.M.S., The Characteristic number of two simultaneous Pell’s equations and it’s application. Simon Stevin”, A Quarterly J.P. and Applied Math., 59: 203-214 (1985)
  • Brown, E. “Sets in which xy+ k is always a square. Mathematics of Comp.”, 613-620 (1985). Altindis, H., “On P j2
  • Calcutta”, Mathematical Society, 86(4): 305 - 306. (1994).
  • Dujella, A., “On the size of Diophantine m tuples”, Math. Proc. Cambridge Philos Soc., :23-33 (2002).
  • Dujella A.and Luca, F., “Diophantine m tuples for primes”. Intern. Math. Research Notices :2913-2940 (2005).
  • Dujella A. and. Ramasamy, A. M. S, “Fibonacci numbers and sets with the property D (4)”, Bull. Belg. Math. Soc., Simon Stevin, 12:401-412 (2005).
There are 12 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Hüseyin Altındiş This is me

Publication Date July 6, 2010
Published in Issue Year 2010 Volume: 23 Issue: 3

Cite

APA Altındiş, H. (2010). Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science, 23(3), 295-297.
AMA Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. September 2010;23(3):295-297.
Chicago Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science 23, no. 3 (September 2010): 295-97.
EndNote Altındiş H (September 1, 2010) Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science 23 3 295–297.
IEEE H. Altındiş, “Characterization and Extendability of P k Sets For k=3(4)”, Gazi University Journal of Science, vol. 23, no. 3, pp. 295–297, 2010.
ISNAD Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science 23/3 (September 2010), 295-297.
JAMA Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. 2010;23:295–297.
MLA Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science, vol. 23, no. 3, 2010, pp. 295-7.
Vancouver Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. 2010;23(3):295-7.