[1] N. Agayev, S. Halicioglu and A. Harmanci, ``On Rickart modules’’, appears in Bull. Iran. Math. Soc. available at http://www. iranjournals.ir/ims/bulletin/
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ``On extensions of Baer and quasi-Baer Rings’’, J. Pure Appl. Algebra 159(2001), 25-42.
[3] I. Kaplansky, ``Rings of Operators’’, Math. Lecture Note Series, Benjamin, New York, (1965).
[4] T. K. Lee and Y. Zhou, ``Reduced modules’’, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure Appl. Math. 236, Dekker, New York, (2004).
[5] S. T. Rizvi and C. S. Roman, ``Baer and QuasiBaer Modules’’, Comm. Algebra 32(2004), 103-123.
[6] J. E. Roos, ``Sur les categories auto-injectifs a droit’’, C. R. Acad. Sci. Paris 265(1967), 14- 17.
Extensions of Baer and Principally Projective Modules
Year 2012,
Volume: 25 Issue: 4, 863 - 867, 25.02.2012
In this note, we investigate extensions of Baer and principally projective modules. Let R be an arbitrary ring with identity and M a right R-module. For an abelian module M, we show that M is Baer (resp. principally projective) if and only if the polynomial extension of M is Baer (resp. principally projective) if and only if the power series extension of M is Baer (resp. principally projective) if and only if the Laurent polynomial extension of M is Baer (resp. principally projective) if and only if the Laurent power series extension of M is Baer (resp. principally projective).
[1] N. Agayev, S. Halicioglu and A. Harmanci, ``On Rickart modules’’, appears in Bull. Iran. Math. Soc. available at http://www. iranjournals.ir/ims/bulletin/
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ``On extensions of Baer and quasi-Baer Rings’’, J. Pure Appl. Algebra 159(2001), 25-42.
[3] I. Kaplansky, ``Rings of Operators’’, Math. Lecture Note Series, Benjamin, New York, (1965).
[4] T. K. Lee and Y. Zhou, ``Reduced modules’’, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure Appl. Math. 236, Dekker, New York, (2004).
[5] S. T. Rizvi and C. S. Roman, ``Baer and QuasiBaer Modules’’, Comm. Algebra 32(2004), 103-123.
[6] J. E. Roos, ``Sur les categories auto-injectifs a droit’’, C. R. Acad. Sci. Paris 265(1967), 14- 17.
Halicioglu, S., Ungor, B., & Harmancı, A. (2012). Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science, 25(4), 863-867.
AMA
Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. October 2012;25(4):863-867.
Chicago
Halicioglu, Sait, Burcu Ungor, and Abdullah Harmancı. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science 25, no. 4 (October 2012): 863-67.
EndNote
Halicioglu S, Ungor B, Harmancı A (October 1, 2012) Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science 25 4 863–867.
IEEE
S. Halicioglu, B. Ungor, and A. Harmancı, “Extensions of Baer and Principally Projective Modules”, Gazi University Journal of Science, vol. 25, no. 4, pp. 863–867, 2012.
ISNAD
Halicioglu, Sait et al. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science 25/4 (October 2012), 863-867.
JAMA
Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. 2012;25:863–867.
MLA
Halicioglu, Sait et al. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science, vol. 25, no. 4, 2012, pp. 863-7.
Vancouver
Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. 2012;25(4):863-7.