BibTex RIS Cite

TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES

Year 2013, Volume: 26 Issue: 1, 57 - 62, 31.03.2013

Abstract

In this paper, we study the first passage time of a diffusion process to a moving boundary. Under some special conditions we apply a transformation to diffusion process and to the boundary function and then in each case obtain the first passage time distribution of the original process by the first passage time distribution of transformed process to transformed boundary. In addition, by applying these transformations to the Ornstein- Uhlenbeck and Wiener processes the first passage time distributions for the new boundaries are presented as examples.

 Keywords: Diffusion process; Ornstein-Uhlenbeck process; First passage times; Moving boundaries; Lambert function; Hyperbolic function; Fixed boundaries

References

  • Abramowitz, M., Stegun, I. “AHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, National Bureau of Standards. . (1972).
  • Aksop, C. “Opsiyon Tercihlerinin Stokastis Analiz İle İncelenmesi”, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, (2012)
  • Breiman, L. “First Exit Time from a Square root Boundary”. Proceedings 5th Berkley Symposium Mathematical Statistics and Probability, 2: 9- 16(1966).
  • Buonocore, A., Nobile, A. G., Ricciardi, L. M. “A New Integral Equation for the Evaluation of First- Passage-Time Probability Densities”. Advances in Applied Probability, 19: 784-800(1987).
  • Capocelli, R. M., Ricciardi, L. M. “On the Transformation of Diffusion Processes into the Feller Process”, Mathematical Biosciences, 29: 219-234(1976)..
  • Cherkasov, I. D. On the Transformation of the Diffusion Process to a Wiener Process. Theory of Probability and Applications, 2: 373-377(1957).
  • Ditlevsen, S., Ditlevsen, O. Parameter Estimation from Observations of First-Passage Times of the Ornstein-Uhlenbeck Process and the Feller Process. Probabilistic Engineering Mechanics, 23: 170- 179(2008).
  • Dominé, M. Moments of the First-Passage Time of a Wiener Process with Drift Between Two Elastic Barriers. Journal of Applied Probability, 33: 1007- 1013(1995).
  • Durbin, J. The First-Passage Density of a Continuous Gaussian Process to a General Boundary. Journal of Applied Probability, 22: 99- 122(1985).
  • Fang, Y., Wu, R. Optimal Dividends in the Brownian Motion Risk model with Interest. Journal Mathematics, 229: 145-151(2009). and Applied
  • Fortet, R. Les Functiones Aléatories du Type de Markov Associées a Certaines Equationes Linéaries aux Dérivées Partielles du Type Parabolique. Journal de Mathématiques Pures et Appliqées, 22: 177-243(1943).
  • Giorno, V., Lansky, P. Nobile, A., Ricciardi, L. “Diffusion Approximation and First-Passage-Time Problem for a Model Neuron”, Biological Cybernetics, 58: 387-404(1988).
  • Giorno, V., Nobile, A. G., Ricciardi, L. M. On the Asymptotic Densities for One-Dimensional Diffusion Process and Varying Boundaries. Advances in Applied Probability, 22: 883-914(1990).
  • Kolmogorov, A. N. (1992) On Analytical Methods in Probability Theory. In Selected Works of A. N. Kolmogorov. Ed. A. N. Shiryayev. Vol II. Kluwer Academic. English translation from Kolmorogov, A. N. (1931) Über die Analytischen Methoden in der Warscheinlichkeitsrechnung, Math. Ann. 104: 415-458.
  • Martin-Löf, A. “The Final Size of a Nearly Critical Epidemic, and the First Passage Time of a Wiener Process to a Parabolic Barrier”, Journal of Applied Probability, 35: 671-682(1998).
  • McKenzie, H. W., Lewis, M. A., Merrill, E. H. “First Passage Time Analysis of Animal Movement and Insights into the Functional Response”, Bulletin of Mathematical Biology, 71: 107- 129(2009).
  • Ricciardi, L. M. On the Transformation of Diffusion Processes into the Wiener Process. Journal Applications, 54: 185-199(1976). Analysis and
  • Ricciardi, L. M., Sato, S. A Note on the Evaluation of Journal of Applied Probability, 20: 197-201(1983). Probability Densities.
  • Salminen, P. “On the First Hitting Time and the Last Exit Time for a Brownian Motion to/from a Moving Probability, 20: 411-426 (1988). in Applied
  • Smith, C. E. A “Lauguerre Series Approximation to the Probability Density of the First Passage Time of the Ornstein-Uhlenbeck”, Noise in Physical Systems and 1/f Fluctuations, 389-392(1991).
  • Wang, H., Yin, C. “Moments of the First Passage Time of One-Dimensional Diffusion with Two- Sided Barriers”, Statistics and Probability Letters, 78: 3373-3380(2008).
  • Szabo, A., Schulten, K., Schulten, Z. “First Passage Time Approach to Diffusion Controlled Reactions”, Journal of Chemical Physics, 72 (8): 4350 – 4357(1980)
  • Hänggi, P., Talkner, P., Borkovec, M. “Reaction- rate Theory: Fifty Years After Kramers”, Reviews of Modern Physics, 62: 2(1990)
Year 2013, Volume: 26 Issue: 1, 57 - 62, 31.03.2013

Abstract

References

  • Abramowitz, M., Stegun, I. “AHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, National Bureau of Standards. . (1972).
  • Aksop, C. “Opsiyon Tercihlerinin Stokastis Analiz İle İncelenmesi”, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, (2012)
  • Breiman, L. “First Exit Time from a Square root Boundary”. Proceedings 5th Berkley Symposium Mathematical Statistics and Probability, 2: 9- 16(1966).
  • Buonocore, A., Nobile, A. G., Ricciardi, L. M. “A New Integral Equation for the Evaluation of First- Passage-Time Probability Densities”. Advances in Applied Probability, 19: 784-800(1987).
  • Capocelli, R. M., Ricciardi, L. M. “On the Transformation of Diffusion Processes into the Feller Process”, Mathematical Biosciences, 29: 219-234(1976)..
  • Cherkasov, I. D. On the Transformation of the Diffusion Process to a Wiener Process. Theory of Probability and Applications, 2: 373-377(1957).
  • Ditlevsen, S., Ditlevsen, O. Parameter Estimation from Observations of First-Passage Times of the Ornstein-Uhlenbeck Process and the Feller Process. Probabilistic Engineering Mechanics, 23: 170- 179(2008).
  • Dominé, M. Moments of the First-Passage Time of a Wiener Process with Drift Between Two Elastic Barriers. Journal of Applied Probability, 33: 1007- 1013(1995).
  • Durbin, J. The First-Passage Density of a Continuous Gaussian Process to a General Boundary. Journal of Applied Probability, 22: 99- 122(1985).
  • Fang, Y., Wu, R. Optimal Dividends in the Brownian Motion Risk model with Interest. Journal Mathematics, 229: 145-151(2009). and Applied
  • Fortet, R. Les Functiones Aléatories du Type de Markov Associées a Certaines Equationes Linéaries aux Dérivées Partielles du Type Parabolique. Journal de Mathématiques Pures et Appliqées, 22: 177-243(1943).
  • Giorno, V., Lansky, P. Nobile, A., Ricciardi, L. “Diffusion Approximation and First-Passage-Time Problem for a Model Neuron”, Biological Cybernetics, 58: 387-404(1988).
  • Giorno, V., Nobile, A. G., Ricciardi, L. M. On the Asymptotic Densities for One-Dimensional Diffusion Process and Varying Boundaries. Advances in Applied Probability, 22: 883-914(1990).
  • Kolmogorov, A. N. (1992) On Analytical Methods in Probability Theory. In Selected Works of A. N. Kolmogorov. Ed. A. N. Shiryayev. Vol II. Kluwer Academic. English translation from Kolmorogov, A. N. (1931) Über die Analytischen Methoden in der Warscheinlichkeitsrechnung, Math. Ann. 104: 415-458.
  • Martin-Löf, A. “The Final Size of a Nearly Critical Epidemic, and the First Passage Time of a Wiener Process to a Parabolic Barrier”, Journal of Applied Probability, 35: 671-682(1998).
  • McKenzie, H. W., Lewis, M. A., Merrill, E. H. “First Passage Time Analysis of Animal Movement and Insights into the Functional Response”, Bulletin of Mathematical Biology, 71: 107- 129(2009).
  • Ricciardi, L. M. On the Transformation of Diffusion Processes into the Wiener Process. Journal Applications, 54: 185-199(1976). Analysis and
  • Ricciardi, L. M., Sato, S. A Note on the Evaluation of Journal of Applied Probability, 20: 197-201(1983). Probability Densities.
  • Salminen, P. “On the First Hitting Time and the Last Exit Time for a Brownian Motion to/from a Moving Probability, 20: 411-426 (1988). in Applied
  • Smith, C. E. A “Lauguerre Series Approximation to the Probability Density of the First Passage Time of the Ornstein-Uhlenbeck”, Noise in Physical Systems and 1/f Fluctuations, 389-392(1991).
  • Wang, H., Yin, C. “Moments of the First Passage Time of One-Dimensional Diffusion with Two- Sided Barriers”, Statistics and Probability Letters, 78: 3373-3380(2008).
  • Szabo, A., Schulten, K., Schulten, Z. “First Passage Time Approach to Diffusion Controlled Reactions”, Journal of Chemical Physics, 72 (8): 4350 – 4357(1980)
  • Hänggi, P., Talkner, P., Borkovec, M. “Reaction- rate Theory: Fifty Years After Kramers”, Reviews of Modern Physics, 62: 2(1990)
There are 23 citations in total.

Details

Primary Language English
Journal Section Statistics
Authors

Salih Çelebıoğlu

Tahir Khanıyev

Cihan Aksop This is me

Salih Çelebioğlu

Tahir Khaniyev

Publication Date March 31, 2013
Published in Issue Year 2013 Volume: 26 Issue: 1

Cite

APA Çelebıoğlu, S., Khanıyev, T., Aksop, C., Çelebioğlu, S., et al. (2013). TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES. Gazi University Journal of Science, 26(1), 57-62.
AMA Çelebıoğlu S, Khanıyev T, Aksop C, Çelebioğlu S, Khaniyev T. TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES. Gazi University Journal of Science. March 2013;26(1):57-62.
Chicago Çelebıoğlu, Salih, Tahir Khanıyev, Cihan Aksop, Salih Çelebioğlu, and Tahir Khaniyev. “TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES”. Gazi University Journal of Science 26, no. 1 (March 2013): 57-62.
EndNote Çelebıoğlu S, Khanıyev T, Aksop C, Çelebioğlu S, Khaniyev T (March 1, 2013) TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES. Gazi University Journal of Science 26 1 57–62.
IEEE S. Çelebıoğlu, T. Khanıyev, C. Aksop, S. Çelebioğlu, and T. Khaniyev, “TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES”, Gazi University Journal of Science, vol. 26, no. 1, pp. 57–62, 2013.
ISNAD Çelebıoğlu, Salih et al. “TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES”. Gazi University Journal of Science 26/1 (March 2013), 57-62.
JAMA Çelebıoğlu S, Khanıyev T, Aksop C, Çelebioğlu S, Khaniyev T. TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES. Gazi University Journal of Science. 2013;26:57–62.
MLA Çelebıoğlu, Salih et al. “TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES”. Gazi University Journal of Science, vol. 26, no. 1, 2013, pp. 57-62.
Vancouver Çelebıoğlu S, Khanıyev T, Aksop C, Çelebioğlu S, Khaniyev T. TRANSFORMATION ON DIFFUSION PROCESSES AND FIRST PASSAGE TIME TO THE MOVING BOUNDARIES. Gazi University Journal of Science. 2013;26(1):57-62.