Research Article
BibTex RIS Cite
Year 2015, Volume: 28 Issue: 1, 21 - 26, 23.02.2015

Abstract

References

  • [1] Horvath, I. T., Anastas, P.T., “Innovations and green chemistry”, Chem. Rev., 107: 2169-2173, (2007). [2] Dallinger, D., Kappe, C. O., “Microwave-assisted synthesis in water as solvent”, Chem. Rev., 107: 2563- 2591, (2007)
  • [3] Constable, D. J. C., Curzons, A. D., Cunningham, V. L., “Metrics to green chemistry: Which are the best?”, Green Chem., 4: 521-527, (2002).
  • [4] Welton, T., “Room-temperature ionic liquids. Solvents for synthesis and catalysis”, Chem. Rev., 99: 2071-2083, (1999).
  • [5] Safaei, H. R., Shekouhy, M., Shafiee, V., Davoodi, M., “Glycerol based ionic liquid with a boron core: A new highly efficient and reusable promoting medium for the synthesis of quinazolinones”, J. Mol. Liq., 180: 139-144, (2013).
  • [6] Lyubimov, S. E., Rastorguev, E. A., Lubentsova, K. I., Korlyukov, A. A., Davankov, V. A., “Rhodiumcontaining hypercross-linked polystyrene as a heterogeneous catalyst for the hydroformylation of olefins in supercritical carbon dioxide”, Tetrahedron Lett., 54: 1116-1119, (2013)
  • [7] Gladysz, J. A., Curran, D. P., Horvath, I. T., “Handbook of Fluorous Chemistry”, Wiley-VCH, Weinheim, (2004).
  • [8] Mallepalli, R., Yeramanchi, L., Bantu, R., Nagarapu, L., “Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions”, Synlett, 2730-2732, (2011).
  • [9] Yang, J., Li, H., Li, M., Gu, Y., “Multicomponent reactions of β-ketosulfones and formaldehyde in a biobased binary mixture solvent system composed of meglumine and gluconic acid aqueous solution”, Adv. Synth. Catal., 354: 688-700, (2012).
  • [10] Verma, S., Jain L. S., Sain, B., “PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4- dihydropyrimidinones”, Tetrahedron Lett., 51: 6897- 6900, (2010).
  • [11] Huang, Y. B., Yi, W. B., Cai, C., “An efficient, recoverable fluorous organocatalyst for direct reductive amination of aldehydes”, J. Fluorine Chem., 131: 879- 882, (2010).
  • [12] Miura, T., Imai, K., Ina, M., Tada, N., Imai, N., Itoh, A., “Direct Asymmetric Aldol Reaction with Recyclable Fluorous Organocatalyst”, Org. Lett., 12: 1620-1623, (2010).
  • [13] Khalafi-Nezhad, A., Shahidzadeh, E. S., Sarikhani, S., Panahi, F., “A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water”, J. Mol. Catal. A: Chem., 379: 1-8, (2013).
  • [14] Bonollo, S., Lanari, D., Angelini, T., Pizzo, F., Marrocchi, A., Vaccaro, L., “Rasta resin as support for TBD in base-catalyzed organic processes”, J. Catal., 285: 216-222, (2012).
  • [15] Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., Noto, R., “Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions: A common post-modification approach for catalytic differentiation”, Catal. Commun., 16: 75-80, (2011).
  • [16] Bellis, E., Kokotos, G., “Proline-modified poly(propyleneimine) dendrimers as catalysts for asymmetric aldol reactions”, J. Mol. Catal. A: Chem., 241: 166-174, (2005).
  • [17] Powell, A. B., Suzuki, Y., Ueda, M., Bielawski, C. W., Cowley, A. H., “A recyclable, self-supported organocatalyst based on a poly(N-heterocyclic carbene)”, J. Am. Chem. Soc., 133: 5218-5220, (2011).
  • [18] Riemenschneider, W., “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH, Weinheim, Vol. A5: 235-248, (1986).
  • [19] French, K. J., Strickler, M. D., Rock, D. A., Rock, D. A., Bennett, G. A., Wahlstorm, J. L., Goldstein, B. M., Jones, J. P., “Benign synthesis of 2-ethylhexanoic acid by cytochrome P450cam:  enzymatic, crystallographic, and theoretical studies”, Biochemistry, 40: 9532-9538, (2001).
  • [20] Schreier, P., Drawert, F., Junker, A., “Identification of volatile constituents from grapes”, J. Agric. Food Chem., 24: 331-336, (1976).
  • [21] Willecke, K., Pardee, A. B., “Fatty acid-requiring mutant of bacillus subtilis defective in branched chain α- keto acid dehydrogenase”, J. Biol. Chem., 246: 5264- 5272, (1971).
  • [22] Raju, R., Prasad, K., “Synthetic applications of 2- ethylhexanoic acid derived reagents”, Tetrahedron, 68: 1341-1349, (2012).
  • [23] Kargar, M., Hekmatshoar, R., Mostashari, A., Hashemi, Z., “Efficient and green synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thions using imidazol-1-ylacetic acid as a novel, reusable and water-soluble organocatalyst”, Catal. Commun., 15: 123-126, (2011).
  • [24] Hekmatshoar, R., Kargar, M., Hashemi, Z., Goli, F., Mostashari, A., “Novel and efficient organocatalytic biginelli reaction using 2-ethylhexanoic acid”, GU. J. Sci., 25: 617-621, (2012).
  • [25] Hekmatshoar, R., Jahanbakhshi, H., Mousavizadeh, F., Rahnamafar, R., “Synthesis of trisubstituted imidazoles using lewis and bronsted acid catalysts”, GU. J. S., 25: 29-34, (2012).
  • [26] Leister, C., Wang, Y., Zhao, Z., Lindsley, C. V., “Efficient synthesis of imidazoles from aldehydes and 1,2- diketones using microwave irradiation”, Org. Lett., 6: 1453-1456, (2004).
  • [27] Abrahams, S. L., Hazen, R. J., Batson, A. G., Phillips, A. P., “Trifenagrel: a chemically novel platelet aggregation inhibitor”, J. Pharmacol. Exp. Ther., 249: 359-365, (1989).
  • [28] Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., Singh, T. P., “One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst”, J. Mol. Catal. A: Chem., 265: 177-182, (2007).
  • [29] Mekheimer, R. A., Abdelhameed, A. M. A., Mansour, S. A. A., Sadek, K. U., “Solar thermochemical reactions III: A convenient one-pot synthesis of 1,2,4,5- tetrasubstituted imidazoles catalyzed by high surface area SiO2 and induced by solar thermal energy”, Chin. Chem. Lett., 20: 812-814, (2009).
  • [30] Samai, S., Nandi, G. C., Singh, P., Singh, M. S., “LProline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles”, Tetrahedron, 65: 10155-10161, (2009).
  • [31] Teimouri, A., Chermahini, A. N., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5- tetrasubstituted imidazoles catalyzed via solid acid nanocatalyst”, J. Mol. Catal. A: Chem., 346: 39-45, (2011).
  • [32] Sharma, S. D., Hazarika, P., Konwar, D., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O”, Tetrahedron Lett., 49: 2216-2220, (2008).
  • [33] Kannan, V., Sreekumar, K., “Clay supported titanium catalyst for the solvent free synthesis of tetrasubstituted imidazoles and benzimidazoles”, J. Mol. Catal. A: Chem., 376: 34-39, (2013).
  • [34] Mirjalili, B. F., Bamoniri, A. H., Zamani, L., “Onepot synthesis of 1,2,4,5-tetrasubstituted imidazoles promoted by nano-TiCl4.SiO2”, Scientica Iranica C, 19: 565-568, (2012).
  • [35] Sadeghi, B., Mirjalili, B. F., Hashemi, M. M., “BF3·SiO2: an efficient reagent system for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles”, Tetrahedron Lett., 49: 2575-2577, (2008).
  • [36] Murthy, S. N., Madhav, B., Nageswar, Y. V. D., “DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multicomponent condensation strategy”, Tetrahedron Lett., 51: 5252-5257, (2010).
  • [37] Wang, X. C., Gong, H. P., Quan, Z. J., Li, L., Ye, H. L., “PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5- tetraaryl-1H-imidazoles”, Chin. Chem. Lett., 20: 44-47, (200

A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium

Year 2015, Volume: 28 Issue: 1, 21 - 26, 23.02.2015

Abstract

2-Ethylhexanoic acid has been applied as a dual solvent-catalyst for the one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. This naturally occurring and widely produced fatty acid exhibited remarkable catalytic activity and was easily separated by extraction. The reusability of this catalytic media was examined up to four times and no significant drop in catalytic activity was observed. Utilizing ecofriendly, low cost and commercially available reagent, short reaction times (30-90 min), very good to excellent yields (88-93) and straightforward workup procedure are the salient properties offered by this methodology.

References

  • [1] Horvath, I. T., Anastas, P.T., “Innovations and green chemistry”, Chem. Rev., 107: 2169-2173, (2007). [2] Dallinger, D., Kappe, C. O., “Microwave-assisted synthesis in water as solvent”, Chem. Rev., 107: 2563- 2591, (2007)
  • [3] Constable, D. J. C., Curzons, A. D., Cunningham, V. L., “Metrics to green chemistry: Which are the best?”, Green Chem., 4: 521-527, (2002).
  • [4] Welton, T., “Room-temperature ionic liquids. Solvents for synthesis and catalysis”, Chem. Rev., 99: 2071-2083, (1999).
  • [5] Safaei, H. R., Shekouhy, M., Shafiee, V., Davoodi, M., “Glycerol based ionic liquid with a boron core: A new highly efficient and reusable promoting medium for the synthesis of quinazolinones”, J. Mol. Liq., 180: 139-144, (2013).
  • [6] Lyubimov, S. E., Rastorguev, E. A., Lubentsova, K. I., Korlyukov, A. A., Davankov, V. A., “Rhodiumcontaining hypercross-linked polystyrene as a heterogeneous catalyst for the hydroformylation of olefins in supercritical carbon dioxide”, Tetrahedron Lett., 54: 1116-1119, (2013)
  • [7] Gladysz, J. A., Curran, D. P., Horvath, I. T., “Handbook of Fluorous Chemistry”, Wiley-VCH, Weinheim, (2004).
  • [8] Mallepalli, R., Yeramanchi, L., Bantu, R., Nagarapu, L., “Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions”, Synlett, 2730-2732, (2011).
  • [9] Yang, J., Li, H., Li, M., Gu, Y., “Multicomponent reactions of β-ketosulfones and formaldehyde in a biobased binary mixture solvent system composed of meglumine and gluconic acid aqueous solution”, Adv. Synth. Catal., 354: 688-700, (2012).
  • [10] Verma, S., Jain L. S., Sain, B., “PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4- dihydropyrimidinones”, Tetrahedron Lett., 51: 6897- 6900, (2010).
  • [11] Huang, Y. B., Yi, W. B., Cai, C., “An efficient, recoverable fluorous organocatalyst for direct reductive amination of aldehydes”, J. Fluorine Chem., 131: 879- 882, (2010).
  • [12] Miura, T., Imai, K., Ina, M., Tada, N., Imai, N., Itoh, A., “Direct Asymmetric Aldol Reaction with Recyclable Fluorous Organocatalyst”, Org. Lett., 12: 1620-1623, (2010).
  • [13] Khalafi-Nezhad, A., Shahidzadeh, E. S., Sarikhani, S., Panahi, F., “A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water”, J. Mol. Catal. A: Chem., 379: 1-8, (2013).
  • [14] Bonollo, S., Lanari, D., Angelini, T., Pizzo, F., Marrocchi, A., Vaccaro, L., “Rasta resin as support for TBD in base-catalyzed organic processes”, J. Catal., 285: 216-222, (2012).
  • [15] Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., Noto, R., “Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions: A common post-modification approach for catalytic differentiation”, Catal. Commun., 16: 75-80, (2011).
  • [16] Bellis, E., Kokotos, G., “Proline-modified poly(propyleneimine) dendrimers as catalysts for asymmetric aldol reactions”, J. Mol. Catal. A: Chem., 241: 166-174, (2005).
  • [17] Powell, A. B., Suzuki, Y., Ueda, M., Bielawski, C. W., Cowley, A. H., “A recyclable, self-supported organocatalyst based on a poly(N-heterocyclic carbene)”, J. Am. Chem. Soc., 133: 5218-5220, (2011).
  • [18] Riemenschneider, W., “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH, Weinheim, Vol. A5: 235-248, (1986).
  • [19] French, K. J., Strickler, M. D., Rock, D. A., Rock, D. A., Bennett, G. A., Wahlstorm, J. L., Goldstein, B. M., Jones, J. P., “Benign synthesis of 2-ethylhexanoic acid by cytochrome P450cam:  enzymatic, crystallographic, and theoretical studies”, Biochemistry, 40: 9532-9538, (2001).
  • [20] Schreier, P., Drawert, F., Junker, A., “Identification of volatile constituents from grapes”, J. Agric. Food Chem., 24: 331-336, (1976).
  • [21] Willecke, K., Pardee, A. B., “Fatty acid-requiring mutant of bacillus subtilis defective in branched chain α- keto acid dehydrogenase”, J. Biol. Chem., 246: 5264- 5272, (1971).
  • [22] Raju, R., Prasad, K., “Synthetic applications of 2- ethylhexanoic acid derived reagents”, Tetrahedron, 68: 1341-1349, (2012).
  • [23] Kargar, M., Hekmatshoar, R., Mostashari, A., Hashemi, Z., “Efficient and green synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thions using imidazol-1-ylacetic acid as a novel, reusable and water-soluble organocatalyst”, Catal. Commun., 15: 123-126, (2011).
  • [24] Hekmatshoar, R., Kargar, M., Hashemi, Z., Goli, F., Mostashari, A., “Novel and efficient organocatalytic biginelli reaction using 2-ethylhexanoic acid”, GU. J. Sci., 25: 617-621, (2012).
  • [25] Hekmatshoar, R., Jahanbakhshi, H., Mousavizadeh, F., Rahnamafar, R., “Synthesis of trisubstituted imidazoles using lewis and bronsted acid catalysts”, GU. J. S., 25: 29-34, (2012).
  • [26] Leister, C., Wang, Y., Zhao, Z., Lindsley, C. V., “Efficient synthesis of imidazoles from aldehydes and 1,2- diketones using microwave irradiation”, Org. Lett., 6: 1453-1456, (2004).
  • [27] Abrahams, S. L., Hazen, R. J., Batson, A. G., Phillips, A. P., “Trifenagrel: a chemically novel platelet aggregation inhibitor”, J. Pharmacol. Exp. Ther., 249: 359-365, (1989).
  • [28] Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., Singh, T. P., “One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst”, J. Mol. Catal. A: Chem., 265: 177-182, (2007).
  • [29] Mekheimer, R. A., Abdelhameed, A. M. A., Mansour, S. A. A., Sadek, K. U., “Solar thermochemical reactions III: A convenient one-pot synthesis of 1,2,4,5- tetrasubstituted imidazoles catalyzed by high surface area SiO2 and induced by solar thermal energy”, Chin. Chem. Lett., 20: 812-814, (2009).
  • [30] Samai, S., Nandi, G. C., Singh, P., Singh, M. S., “LProline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles”, Tetrahedron, 65: 10155-10161, (2009).
  • [31] Teimouri, A., Chermahini, A. N., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5- tetrasubstituted imidazoles catalyzed via solid acid nanocatalyst”, J. Mol. Catal. A: Chem., 346: 39-45, (2011).
  • [32] Sharma, S. D., Hazarika, P., Konwar, D., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O”, Tetrahedron Lett., 49: 2216-2220, (2008).
  • [33] Kannan, V., Sreekumar, K., “Clay supported titanium catalyst for the solvent free synthesis of tetrasubstituted imidazoles and benzimidazoles”, J. Mol. Catal. A: Chem., 376: 34-39, (2013).
  • [34] Mirjalili, B. F., Bamoniri, A. H., Zamani, L., “Onepot synthesis of 1,2,4,5-tetrasubstituted imidazoles promoted by nano-TiCl4.SiO2”, Scientica Iranica C, 19: 565-568, (2012).
  • [35] Sadeghi, B., Mirjalili, B. F., Hashemi, M. M., “BF3·SiO2: an efficient reagent system for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles”, Tetrahedron Lett., 49: 2575-2577, (2008).
  • [36] Murthy, S. N., Madhav, B., Nageswar, Y. V. D., “DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multicomponent condensation strategy”, Tetrahedron Lett., 51: 5252-5257, (2010).
  • [37] Wang, X. C., Gong, H. P., Quan, Z. J., Li, L., Ye, H. L., “PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5- tetraaryl-1H-imidazoles”, Chin. Chem. Lett., 20: 44-47, (200
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Rahim Hekmatshoar

Mojgan Kargar This is me

Abdoljalil Mostashari This is me

Zahra Hashemi This is me

Fereshteh Goli This is me

Farnoush Mousavizadeh This is me

Publication Date February 23, 2015
Published in Issue Year 2015 Volume: 28 Issue: 1

Cite

APA Hekmatshoar, R., Kargar, M., Mostashari, A., Hashemi, Z., et al. (2015). A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium. Gazi University Journal of Science, 28(1), 21-26.
AMA Hekmatshoar R, Kargar M, Mostashari A, Hashemi Z, Goli F, Mousavizadeh F. A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium. Gazi University Journal of Science. February 2015;28(1):21-26.
Chicago Hekmatshoar, Rahim, Mojgan Kargar, Abdoljalil Mostashari, Zahra Hashemi, Fereshteh Goli, and Farnoush Mousavizadeh. “A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid As a Reusable Organocatalyst and Reaction Medium”. Gazi University Journal of Science 28, no. 1 (February 2015): 21-26.
EndNote Hekmatshoar R, Kargar M, Mostashari A, Hashemi Z, Goli F, Mousavizadeh F (February 1, 2015) A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium. Gazi University Journal of Science 28 1 21–26.
IEEE R. Hekmatshoar, M. Kargar, A. Mostashari, Z. Hashemi, F. Goli, and F. Mousavizadeh, “A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium”, Gazi University Journal of Science, vol. 28, no. 1, pp. 21–26, 2015.
ISNAD Hekmatshoar, Rahim et al. “A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid As a Reusable Organocatalyst and Reaction Medium”. Gazi University Journal of Science 28/1 (February 2015), 21-26.
JAMA Hekmatshoar R, Kargar M, Mostashari A, Hashemi Z, Goli F, Mousavizadeh F. A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium. Gazi University Journal of Science. 2015;28:21–26.
MLA Hekmatshoar, Rahim et al. “A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid As a Reusable Organocatalyst and Reaction Medium”. Gazi University Journal of Science, vol. 28, no. 1, 2015, pp. 21-26.
Vancouver Hekmatshoar R, Kargar M, Mostashari A, Hashemi Z, Goli F, Mousavizadeh F. A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium. Gazi University Journal of Science. 2015;28(1):21-6.