Generalizations of The Feng Qi Type Inequality For Pseudo-Integral
Year 2015,
Volume: 28 Issue: 4, 695 - 702, 12.09.2015
Bayaz Daraby
,
Amir Shafiloo
Asghar Rahimi
Abstract
In this paper, generalizations of the Feng Qi type integral inequalities for pseudo-integrals are proved. There are considered two cases of the real semiring with pseudo-operations: One discusses pseudo-integrals where pseudooperations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring ([a; b]; sup; ), where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities.
References
- bibitem{ham}
- H. Agahi, M. A. Yaghoobi, A Feng Qi type inequality for Sugeno integral, Fuzzy Inf. Eng. (2010) 3: 293-304.
- bibitem{Ana}
- G. Anastassiou, Chebyshev-Gr$overset{..}u$ss type inequalities via Euler type and Fink identities, Mathematics Computing and Modelling 45 (2007) 1189-1200.
- bibitem{bou}
- L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics 7(2) (2006) article 60.
- bibitem{cab}
- J. Caballero, K. Sadarangani, Hermite-Hadamard inequality for fuzzy integrals. Applied Mathematics and Computation
- (2009) 2134-2138.
- bibitem{che}
- T. Y. Chen, H. L. Chang, G. H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, European Journal of Operational Research 137 (2002) 145-161.
- bibitem{Dar}
- B. Daraby, Generalization of the Stolarsky type
- inequality for pseudo-integrals, Fuzzy Sets and Systems 194 (2012) 90-96.
- bibitem{dar}
- B. Daraby, L. Arabi, Related Fritz Carlson type inequality for Sugeno integrals, Soft Computing 17 (2013) 1745-1750.
- bibitem{flo}
- A. Flores-Franuli$check{c}$, H. Rom$acute{a}$n-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation 190 (2007) 1178-1184.
- bibitem{flor}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, Applied Mathematics and Computation 195 (2008) 94-99.
- bibitem{Flo}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, Markov type inequalities
- for fuzzy integrals, Applied Mathematics and Computation 207 (2009) 242-247.
- bibitem{Flor}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 196 (2008) 55-59.
- bibitem{hon}
- D. H. Hong, A sharp Hardy-type inequality of Sugeno integrals, Applied Mathematics and Computation 217 (2010) 437-440.
- bibitem{kra}
- S. G. Krantz, Jensen's Inequality, $sharp$ 9.1.3 in Handbook of Complex Variables, Boston, MA: Birkh$overset{..}a$user, 119, 1999.
- bibitem{luj}
- J.-Y. Lu , K.-S. Wu, J.-C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski's
- inequality, Pattern Recognition 31 (1998) 945-952.
- bibitem{mes1}
- R. Mesiar, E. Pap, Idempotent integral as limit of $g-$integrals, Fuzzy Sets and Systems 102 (1999) 385-392.
- bibitem{mes}
- R. Mesiar, Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009) 58-64.
- bibitem{Mes}
- R. Mesiar, E. Pap, Idempotent integral as limit of $g$-integrals, Fuzzy Sets and Systems 102 (1999) 385-392.
- bibitem{min}
- H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.
- bibitem{ozk}
- U. M, $overset{..}O$zkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Applied
- Mathematics Letters 21 (2008) 993-1000.
- bibitem{Pap6}
- E. Pap, An integral generated by decomposable measure, Univ. Novom
- Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 20 (1) (1990)
- -144.
- bibitem{feng}
- F. Qi, Several integral inequalities. J. Inequal. Pure Appl. Math. 1(2) Art 19.
- bibitem{wan}
- Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
Year 2015,
Volume: 28 Issue: 4, 695 - 702, 12.09.2015
Bayaz Daraby
,
Amir Shafiloo
Asghar Rahimi
References
- bibitem{ham}
- H. Agahi, M. A. Yaghoobi, A Feng Qi type inequality for Sugeno integral, Fuzzy Inf. Eng. (2010) 3: 293-304.
- bibitem{Ana}
- G. Anastassiou, Chebyshev-Gr$overset{..}u$ss type inequalities via Euler type and Fink identities, Mathematics Computing and Modelling 45 (2007) 1189-1200.
- bibitem{bou}
- L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics 7(2) (2006) article 60.
- bibitem{cab}
- J. Caballero, K. Sadarangani, Hermite-Hadamard inequality for fuzzy integrals. Applied Mathematics and Computation
- (2009) 2134-2138.
- bibitem{che}
- T. Y. Chen, H. L. Chang, G. H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, European Journal of Operational Research 137 (2002) 145-161.
- bibitem{Dar}
- B. Daraby, Generalization of the Stolarsky type
- inequality for pseudo-integrals, Fuzzy Sets and Systems 194 (2012) 90-96.
- bibitem{dar}
- B. Daraby, L. Arabi, Related Fritz Carlson type inequality for Sugeno integrals, Soft Computing 17 (2013) 1745-1750.
- bibitem{flo}
- A. Flores-Franuli$check{c}$, H. Rom$acute{a}$n-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation 190 (2007) 1178-1184.
- bibitem{flor}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, Applied Mathematics and Computation 195 (2008) 94-99.
- bibitem{Flo}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, Markov type inequalities
- for fuzzy integrals, Applied Mathematics and Computation 207 (2009) 242-247.
- bibitem{Flor}
- A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 196 (2008) 55-59.
- bibitem{hon}
- D. H. Hong, A sharp Hardy-type inequality of Sugeno integrals, Applied Mathematics and Computation 217 (2010) 437-440.
- bibitem{kra}
- S. G. Krantz, Jensen's Inequality, $sharp$ 9.1.3 in Handbook of Complex Variables, Boston, MA: Birkh$overset{..}a$user, 119, 1999.
- bibitem{luj}
- J.-Y. Lu , K.-S. Wu, J.-C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski's
- inequality, Pattern Recognition 31 (1998) 945-952.
- bibitem{mes1}
- R. Mesiar, E. Pap, Idempotent integral as limit of $g-$integrals, Fuzzy Sets and Systems 102 (1999) 385-392.
- bibitem{mes}
- R. Mesiar, Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009) 58-64.
- bibitem{Mes}
- R. Mesiar, E. Pap, Idempotent integral as limit of $g$-integrals, Fuzzy Sets and Systems 102 (1999) 385-392.
- bibitem{min}
- H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.
- bibitem{ozk}
- U. M, $overset{..}O$zkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Applied
- Mathematics Letters 21 (2008) 993-1000.
- bibitem{Pap6}
- E. Pap, An integral generated by decomposable measure, Univ. Novom
- Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 20 (1) (1990)
- -144.
- bibitem{feng}
- F. Qi, Several integral inequalities. J. Inequal. Pure Appl. Math. 1(2) Art 19.
- bibitem{wan}
- Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.