Lumbar Spinal Stenosis Analysis with Deep Learning Based Decision Support Systems
Year 2023,
Volume: 36 Issue: 3, 1200 - 1215, 01.09.2023
Sinan Altun
,
Ahmet Alkan
Abstract
Lumbar spinal stenosis (LSS) is a condition that affects the quality of life of the 3 vertebrae, the disc and the canal in the lower back. In this region, the nerves in the canal may be subjected to pressure for various reasons, and disease occurs. Surgical intervention is required to treat canal stenosis, and the exact location and size of the spinal stenosis is critical to the surgery. The UNet model, which is an example of this network, can be further deepened with various deep learning networks. In this study, it will be the basis for creating a system that helps in the diagnosis of spinal stenosis by using a deeper network. The ResUNET model using ResNet as the backbone achieved an average IoU of 0.987. This study demonstrated that expert decision support systems using MR images can be used in the diagnosis of LSS.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Thanks
Associate Professor Doctor İdiris ALTUN
References
- [1] Kiliçaslan, M.F., Nabi, V., Yardibi, F., Tokgöz, M.A., Köse, Z., “Research Tendency in Lumbar Spinal Stenosis over the Past Decade: A Bibliometric Analysis”, World Neurosurgery, 149: 71–84, (2021).
- [2] Seçen, A.E., Yiğitkanlı, K., “Lomber Dar Kanal; Patofizyoloji ve Doğal Seyir”, Türk Nöroşirürji Dergisi, 28(2): 216 – 220, (2018)
- [3] Natalia, F., Meidia, H., Afriliana, N., Al-Kafri, A.S., Sudirman, S., Simpson, A., Sophian, A., Al-Jumaily, M., Al-Rashdan, W., Bashtawi, M., “Development of Ground Truth Data for Automatic Lumbar Spine MRI Image Segmentation”, 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Published, 1449-1454, (2018).
- [4] Al-Kafri, A.S., Sudirman, S., Hussain, A., Al-Jumeily, D., Natalia, F., Meidia, H., Afriliana, N., Al-Rashdan, W., Bashtawi, M., Al-Jumaily, M., “Boundary Delineation of MRI Images for Lumbar Spinal Stenosis Detection Through Semantic Segmentation Using Deep Neural Networks”, IEEE Access, 7: 43487–43501, (2019).
- [5] Al Kafri, A.S., Sudirman, S., Hussain, A.J., Al-Jumeily, D., Fergus, P., Natalia, F., Meidia, H., Afriliana, N., Sophian, A., Al-Jumaily, M., Al-Rashdan, W., Bashtawi, M., “Segmentation of Lumbar Spine MRI Images for Stenosis Detection Using Patch-Based Pixel Classification Neural Network”, 2018 IEEE Congress on Evolutionary Computation (CEC), 1-8, (2018).
- [6] Das, P., Pal, C., Acharyya, A., Chakrabarti, A., Basu, S., “Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images”, Computer Methods and Programs in Biomedicine, 205, 106074, (2021).
- [7] Mbarki, W., Bouchouicha, M., Frizzi, S., Tshibasu, F., Farhat, L.B., Sayadi, M., “Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI”, Interdisciplinary Neurosurgery, 22, 100837, (2020).
- [8] Hashia, B., Mir, A. H., “Segmentation techniques for the diagnosis of intervertebral disc diseases”, Methods and Applications, 99–112, (2020).
- [9] Han, Z., Wei, B., Mercado, A., Leung, S., Li, S., “Spine-GAN: Semantic segmentation of multiple spinal structures”, Medical Image Analysis, 50: 23–35, (2018).
- [10] Lessmann, N., Van Ginneken, B., de Jong, P. A., Išgum, I., “Iterative fully convolutional neural networks for automatic vertebra segmentation and identification”, Medical Image Analysis, 53: 142–155, (2019).
- [11] Simonovich, A., Nagar Osherov, A., Linov, L., amp; Kalichman, L. “The influence of knee bolster on lumbar spinal stenosis parameters on Mr Images. Skeletal Radiology, 49(2): 299–305, (2019).
- [12] Lee, S., Lee, J. W., Yeom, J. S., Kim, K.J., Kim, H.-J., Chung, S. K., amp; Kang, H. S., “A practical MRI grading system for lumbar foraminal stenosis”, American Journal of Roentgenology, 194(4): 1095–1098, (2010).
- [13] Ronneberger, O., Fischer, P., Brox, T., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, 234-241, (2015).
- [14] Guo, Y., Duan, X., Wang, C., Guo, H., “Segmentation and recognition of breast ultrasound images based on an expanded U-Net”, PLOS ONE, 16(6): e0253202, (2021).
- [15] Ozturk, O., Saritürk, B., Seker, D. Z., “Comparison of Fully Convolutional Networks (FCN) and U-Net for Road Segmentation from High Resolution Imageries”, International Journal of Environment and Geoinformatics, 7(3): 272–279, (2020).
- [16] Zhao, W., Jiang, D., Peña Queralta, J., Westerlund, T., “MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net”, Informatics in Medicine Unlocked, 19, 100357, (2020).
- [17] Shehab, L. H., Fahmy, O. M., Gasser, S. M., El-Mahallawy, M. S, “An efficient brain tumor image segmentation based on deep residual networks (ResNets)”, Journal of King Saud University - Engineering Sciences, 33(6): 404–412, (2021).
- [18] Lu, S., Wang, S. H., and Zhang, Y. D., “Detecting pathological brain via ResNet and randomized neural networks”, Heliyon, 6(12): e05625, (2020).
- [19] Dong, N., Zhao, L., Wu, C., Chang, J., “Inception v3 based cervical cell classification combined with artificially extracted features”, Applied Soft Computing, 93: 106311, (2020).
- [20] Zhang, Z., Wu, C., Coleman, S., and Kerr, D., “DENSE-INception U-net for medical image segmentation”, Computer Methods and Programs in Biomedicine, 192: 105395, (2020).
- [21] Pravitasari, A.A., Iriawan, N., Almuhayar, M., Azmi, T., Irhamah, I., Fithriasari, K., Purnami, S.W., Ferriastuti, W., “UNet -VGG16 with transfer learning for MRI-based brain tumor segmentation”, TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(3): 1310-1318, (2020).
- [22] Ghosh, S., Chaki, A., Santosh, K., “Improved U-Net architecture with VGG-16 for brain tumor segmentation”, Physical and Engineering Sciences in Medicine, 4(10), (2021).
- [23] Alkan, A., “Analysis of knee osteoarthritis by using fuzzy c-means clustering and SVM classification”, Scientific Research and Essays, 6(20): 4213-4219, (2011).
- [24] Tuncer, A. S., “Spinal Cord Based Kidney Segmentation Using Connected Component Labeling and K-Means Clustering Algorithm”, Traitement du Signal, 36(6): 521-527, (2019).
- [25] Van der Graaf, J. W., Van Hooff, M. L., Buckens, C. F. M., Lessmann, N., “Segmentation of vertebrae and intervertebral discs in lumbar spine MR images with iterative instance segmentation”, Medical Imaging 2022: Image Processing, (2022).
- [26] Silvoster M.L., Mathusoothana, S., Kumar, R., “Efficient segmentation of lumbar intervertebral disc from MR images”, IET Image Processing, 14(13): 3076–3083, (2020).
- [27] Cheng, Y.K., Lin, C.L., Huang, Y.C., Chen, J.C., Lan, T.P., Lian, Z.Y., Chuang, C.H., “Automatic Segmentation of Specific Intervertebral Discs through a Two-Stage MultiResUNet Model”, Journal of Clinical Medicine, 10(20): 4760, (2021).
Year 2023,
Volume: 36 Issue: 3, 1200 - 1215, 01.09.2023
Sinan Altun
,
Ahmet Alkan
References
- [1] Kiliçaslan, M.F., Nabi, V., Yardibi, F., Tokgöz, M.A., Köse, Z., “Research Tendency in Lumbar Spinal Stenosis over the Past Decade: A Bibliometric Analysis”, World Neurosurgery, 149: 71–84, (2021).
- [2] Seçen, A.E., Yiğitkanlı, K., “Lomber Dar Kanal; Patofizyoloji ve Doğal Seyir”, Türk Nöroşirürji Dergisi, 28(2): 216 – 220, (2018)
- [3] Natalia, F., Meidia, H., Afriliana, N., Al-Kafri, A.S., Sudirman, S., Simpson, A., Sophian, A., Al-Jumaily, M., Al-Rashdan, W., Bashtawi, M., “Development of Ground Truth Data for Automatic Lumbar Spine MRI Image Segmentation”, 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Published, 1449-1454, (2018).
- [4] Al-Kafri, A.S., Sudirman, S., Hussain, A., Al-Jumeily, D., Natalia, F., Meidia, H., Afriliana, N., Al-Rashdan, W., Bashtawi, M., Al-Jumaily, M., “Boundary Delineation of MRI Images for Lumbar Spinal Stenosis Detection Through Semantic Segmentation Using Deep Neural Networks”, IEEE Access, 7: 43487–43501, (2019).
- [5] Al Kafri, A.S., Sudirman, S., Hussain, A.J., Al-Jumeily, D., Fergus, P., Natalia, F., Meidia, H., Afriliana, N., Sophian, A., Al-Jumaily, M., Al-Rashdan, W., Bashtawi, M., “Segmentation of Lumbar Spine MRI Images for Stenosis Detection Using Patch-Based Pixel Classification Neural Network”, 2018 IEEE Congress on Evolutionary Computation (CEC), 1-8, (2018).
- [6] Das, P., Pal, C., Acharyya, A., Chakrabarti, A., Basu, S., “Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images”, Computer Methods and Programs in Biomedicine, 205, 106074, (2021).
- [7] Mbarki, W., Bouchouicha, M., Frizzi, S., Tshibasu, F., Farhat, L.B., Sayadi, M., “Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI”, Interdisciplinary Neurosurgery, 22, 100837, (2020).
- [8] Hashia, B., Mir, A. H., “Segmentation techniques for the diagnosis of intervertebral disc diseases”, Methods and Applications, 99–112, (2020).
- [9] Han, Z., Wei, B., Mercado, A., Leung, S., Li, S., “Spine-GAN: Semantic segmentation of multiple spinal structures”, Medical Image Analysis, 50: 23–35, (2018).
- [10] Lessmann, N., Van Ginneken, B., de Jong, P. A., Išgum, I., “Iterative fully convolutional neural networks for automatic vertebra segmentation and identification”, Medical Image Analysis, 53: 142–155, (2019).
- [11] Simonovich, A., Nagar Osherov, A., Linov, L., amp; Kalichman, L. “The influence of knee bolster on lumbar spinal stenosis parameters on Mr Images. Skeletal Radiology, 49(2): 299–305, (2019).
- [12] Lee, S., Lee, J. W., Yeom, J. S., Kim, K.J., Kim, H.-J., Chung, S. K., amp; Kang, H. S., “A practical MRI grading system for lumbar foraminal stenosis”, American Journal of Roentgenology, 194(4): 1095–1098, (2010).
- [13] Ronneberger, O., Fischer, P., Brox, T., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, 234-241, (2015).
- [14] Guo, Y., Duan, X., Wang, C., Guo, H., “Segmentation and recognition of breast ultrasound images based on an expanded U-Net”, PLOS ONE, 16(6): e0253202, (2021).
- [15] Ozturk, O., Saritürk, B., Seker, D. Z., “Comparison of Fully Convolutional Networks (FCN) and U-Net for Road Segmentation from High Resolution Imageries”, International Journal of Environment and Geoinformatics, 7(3): 272–279, (2020).
- [16] Zhao, W., Jiang, D., Peña Queralta, J., Westerlund, T., “MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net”, Informatics in Medicine Unlocked, 19, 100357, (2020).
- [17] Shehab, L. H., Fahmy, O. M., Gasser, S. M., El-Mahallawy, M. S, “An efficient brain tumor image segmentation based on deep residual networks (ResNets)”, Journal of King Saud University - Engineering Sciences, 33(6): 404–412, (2021).
- [18] Lu, S., Wang, S. H., and Zhang, Y. D., “Detecting pathological brain via ResNet and randomized neural networks”, Heliyon, 6(12): e05625, (2020).
- [19] Dong, N., Zhao, L., Wu, C., Chang, J., “Inception v3 based cervical cell classification combined with artificially extracted features”, Applied Soft Computing, 93: 106311, (2020).
- [20] Zhang, Z., Wu, C., Coleman, S., and Kerr, D., “DENSE-INception U-net for medical image segmentation”, Computer Methods and Programs in Biomedicine, 192: 105395, (2020).
- [21] Pravitasari, A.A., Iriawan, N., Almuhayar, M., Azmi, T., Irhamah, I., Fithriasari, K., Purnami, S.W., Ferriastuti, W., “UNet -VGG16 with transfer learning for MRI-based brain tumor segmentation”, TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(3): 1310-1318, (2020).
- [22] Ghosh, S., Chaki, A., Santosh, K., “Improved U-Net architecture with VGG-16 for brain tumor segmentation”, Physical and Engineering Sciences in Medicine, 4(10), (2021).
- [23] Alkan, A., “Analysis of knee osteoarthritis by using fuzzy c-means clustering and SVM classification”, Scientific Research and Essays, 6(20): 4213-4219, (2011).
- [24] Tuncer, A. S., “Spinal Cord Based Kidney Segmentation Using Connected Component Labeling and K-Means Clustering Algorithm”, Traitement du Signal, 36(6): 521-527, (2019).
- [25] Van der Graaf, J. W., Van Hooff, M. L., Buckens, C. F. M., Lessmann, N., “Segmentation of vertebrae and intervertebral discs in lumbar spine MR images with iterative instance segmentation”, Medical Imaging 2022: Image Processing, (2022).
- [26] Silvoster M.L., Mathusoothana, S., Kumar, R., “Efficient segmentation of lumbar intervertebral disc from MR images”, IET Image Processing, 14(13): 3076–3083, (2020).
- [27] Cheng, Y.K., Lin, C.L., Huang, Y.C., Chen, J.C., Lan, T.P., Lian, Z.Y., Chuang, C.H., “Automatic Segmentation of Specific Intervertebral Discs through a Two-Stage MultiResUNet Model”, Journal of Clinical Medicine, 10(20): 4760, (2021).