Research Article
BibTex RIS Cite

Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality

Year 2024, Volume: 37 Issue: 2, 556 - 574, 01.06.2024
https://doi.org/10.35378/gujs.1063502

Abstract

This work explores the effects of the temperature (250, 280, 310°C), time (20, 40, 60 min), sewage sludge mixing ratio (25, 50, 75%) on the solid fuel quality and yield of the biochar produced from sewage sludge blended with pine sawdust. The optimal conditions for the torrefaction of sewage sludge and pine sawdust were investigated by the response surface methodology. Mathematical models were developed on the weight yield, high heating value and ash content and experimental data were examined through analysis of variance. The results depicted that the effects of temperature and mixing ratio were more considerable than residence time for the three response variables. The optimum point for weight yield, HHV, ash were predicted to be 60.82%, 21.58 MJ kg-1 and 18.78% at 310°C, 20 min and sewage sludge mixing ratio of 25%, respectively. The experimental results show that the average values of the experiments were 56.4%, 22.9 MJ kg-1, and 21% for weight yield, HHV and ash content, respectively.

Supporting Institution

Ege University Biomass Energy Systems and Technologies Application and Research Center

Thanks

The authors express their gratitude to the Çiğli Wastewater Plant, İzmir Metropolitan Municipality for the procurement of raw materials. This research was supported by Ege University Biomass Energy Systems and Technologies Application and Research Center funded by the Republic of Turkey Presidency Strategy and Budget Directorate.

References

  • [1] Iroba, K.L., Baik, O.D., Tabil, L.G., “Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption”, Biomass and Bioenergy, 106: 8-20, (2017).
  • [2] Nam, H., Capareda, S., “Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology)”, Energy, 91: 507-516, (2015).
  • [3] Cai, J., He, Y., Yu, X., Banks, S.W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A. V., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass”, Renewable and Sustainable Energy Reviews, 76: 309-322, (2017).
  • [4] Dhanavath, K.N., Bankupalli, S., Bhargava, S.K., Parthasarathy, R., “An experimental study to investigate the effect of torrefaction temperature on the kinetics of gas generation”, Journal of Environmental Chemical Engineering, 6(2): 3332-3341, (2018).
  • [5] Matali, S., Rahman, N.A., Idris, S.S., Yaacob, N., Alias, A.B., “Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction”, Procedia Engineering, 148: 671-678, (2016).
  • [6] Stelt, M.J.C. Van der, Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J., “Biomass upgrading by torrefaction for the production of biofuels: A review”, Biomass and Bioenergy, 35(9): 3748-3762, (2011).
  • [7] Buratti, C., Barbanera, M., Lascaro, E., Cotana, F., “Optimization of torrefaction conditions of coffee industry residues using desirability function approach”, Waste Management, 73: 523-534, (2018).
  • [8] Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J., “Effects of torrefaction process parameters on biomass feedstock upgrading”, Fuel, 91(1): 147-154, (2012).
  • [9] Batidzirai, B., Mignot, A.P.R., Schakel, W.B., Junginger, H.M., Faaij, A.P.C., “Biomass torrefaction technology: Techno-economic status and future prospects”, Energy, 62: 196–214, (2013).
  • [10] Deng, J., Wang, G. jun, Kuang, J. hong, Zhang, Y. liang, Luo, Y. hao, “Pretreatment of agricultural residues for co-gasification via torrefaction”, Journal of Analytical and Applied Pyrolysis, 86(2): 331-337, (2009).
  • [11] Cao, Y., Pawłowski, A., “Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment”, Renewable and Sustainable Energy Reviews, 16(3): 1657-1665, (2012).
  • [12] Jiang, L., Liang, J., Yuan, X., Li, H., Li, C., Xiao, Z., Huang, H., Wang, H., Zeng, G., “Co-pelletization of sewage sludge and biomass: The density and hardness of pellet”, Bioresource Technology, 166: 435-43, (2014).
  • [13] Adar, E., Karatop, B., Ince, M., Bilgili, M.S., “Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis”, Renewable and Sustainable Energy Reviews, 62: 429-440, (2016).
  • [14] Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xiang, J., “Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations”, Renewable and Sustainable Energy Reviews, 80: 888-913, (2017).
  • [15] TUIK, “Waste Statistics, Turkish Statistical Institute Waste Statistics”, (2020).
  • [16] Ren, J., Liang, H., Chan, F.T.S., “Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method”, Technological Forecasting and Social Change, 116: 29-39, (2017).
  • [17] Jin, J., Wang, M., Cao, Y., Wu, S., Liang, P., Li, Y., Zhang, J., Zhang, J., Wong, M.H., Shan, S., Christie, P., “Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals”, Bioresource Technology, 228: 218-226, (2017).
  • [18] Chan, W.P., Wang, J.Y., “Formation of synthetic sludge as a representative tool for thermochemical conversion modelling and performance analysis of sewage sludge – Based on a TG-FTIR study”, Journal of Analytical and Applied Pyrolysis, 133: 97-106, (2018).
  • [19] Huang, Y.W., Chen, M.Q., Luo, H.F., “Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model”, Chemical Engineering Journal, 298: 154-161, (2016).
  • [20] Zhang, Q., Hu, J., Lee, D.J., Chang, Y., Lee, Y.J., “Sludge treatment: Current research trends”, Bioresource Technology, 243: 1159-1172, (2017).
  • [21] Pahla, G., Ntuli, F., Muzenda, E., “Torrefaction of landfill food waste for possible application in biomass co-firing”, Waste Management, 71: 512-520, (2018).
  • [22] Fakayode, O.A., Aboagarib, E.A.A., Zhou, C., Ma, H., “Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – A review”, Bioresource Technology, 297: 122408, (2020).
  • [23] Kwon, G., Bhatnagar, A., Wang, H., Kwon, E.E., Song, H., “A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar”, Journal of Hazardous Materials, 400: 123242, (2020).
  • [24] Atienza-Martínez, M., Rubio, I., Fonts, I., Ceamanos, J., Gea, G., “Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using γ-Al2O3”, Chemical Engineering Journal, 308: 264-274, (2017).
  • [25] Atienza-Martínez, M., Fonts, I., Lázaro, L., Ceamanos, J., Gea, G., “Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor”, Chemical Engineering Journal, 259: 467-480, (2015).
  • [26] Wang, Z., Lim, C.J., Grace, J.R., Li, H., Parise, M.R., “Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor”, Bioresource Technology, 244: 281-288, (2017).
  • [27] Wilk, M., Magdziarz, A., Kalemba, I., “Characterisation of renewable fuels’ torrefaction process with different instrumental techniques”, Energy, 87: 259-269, (2015).
  • [28] Piersa, P., Szufa, S., Czerwińska, J., Ünyay, H., Adrian, Ł., Wielgosinski, G., Obraniak, A., Lewandowska, W., Marczak-Grzesik, M., Dzikuć, M., Zdzislawa Romanowska-Duda Z., Olejnik, T. P., “Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers”, Energies, 14(23): 8176, (2021).
  • [29] Hernández, A.B., Okonta, F., Freeman, N., “Sewage sludge charcoal production by N2- and CO2-torrefaction”, Journal of Environmental Chemical Engineering, 5(5): 4406-4414, (2017).
  • [30] Atienza-Martínez, M., Fonts, I., ábrego, J., Ceamanos, J., Gea, G., “Sewage sludge torrefaction in a fluidized bed reactor”, Chemical Engineering Journal, 222: 534-545, (2013).
  • [31] Poudel, J., Ohm, T.I., Lee, S.H., Oh, S.C., “A study on torrefaction of sewage sludge to enhance solid fuel qualities”, Waste Management, 40: 112-118, (2015).
  • [32] Rambo, M.K.D., Schmidt, F.L., Ferreira, M.M.C., “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities”, Talanta, 144: 696-703, (2015).
  • [33] Singh, Y.D., Mahanta, P., Bora, U., “Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production”, Renewable Energy, 103: 490-500, (2017).
  • [34] Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., Pasieczna-Patkowska, S., “Effect of sewage sludge properties on the biochar characteristic”, Journal of Analytical and Applied Pyrolysis, 112: 201-213, (2015).
  • [35] Singh, K., Zondlo, J., “Characterization of fuel properties for coal and torrefied biomass mixtures”, Journal of the Energy Institute, 90(4): 505-512, (2017).
  • [36] Du, J., Zhang, L., Ali, A., Li, R., Xiao, R., Guo, D., Liu, X., Zhang, Z., Ren, C., Zhang, Z., “Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars”, Process Safety and Environmental Protection, 125: 260-268, (2019).
  • [37] Li, S.X., Zou, J.Y., Li, M.F., Wu, X.F., Bian, J., Xue, Z.M., “Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction”, Energy, 124: 321-329, (2017).
  • [38] Chiou, B. Sen, Valenzuela-Medina, D., Bilbao-Sainz, C., Klamczynski, A.K., Avena-Bustillos, R.J., Milczarek, R.R., Du, W.X., Glenn, G.M., Orts, W.J., “Torrefaction of pomaces and nut shells”, Bioresource Technology, 177: 58-65, (2015).
  • [39] Chen, W.H., Kuo, P.C., “Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass”, Energy, 36(2): 803-811, (2011).
  • [40] Chen, X., Tang, J., Tian, X., Wang, L., “Influence of biomass addition on Jincheng coal ash fusion temperatures”, Fuel, 160: 614-620, (2015).
  • [41] Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Lasode, O.A., Malathi, M., Paswan, D., “The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass”, Heliyon, 6(3): e03582, (2020).
  • [42] Wenjing, T., Qin, J., Liu, J., Liu, F., Gu, L., “Effects of pine sawdust and shrimp shell biochar on anaerobic digestion under different acidification conditions”, Journal of Environmental Chemical Engineering, 10(1): 106581, (2021).
  • [43] Wilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., Gökalp, I., “Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study”, Biomass and Bioenergy, 120: 166-175, (2019).
  • [44] Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G., “Torrefaction of wood. Part 2. Analysis of products”, Journal of Analytical and Applied Pyrolysis, 77(1): 35-40, (2006).
  • [45] Gupta, G.K., Mondal, M.K., “Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology”, Energy, 170: 423-437, (2019).
  • [46] Huang, Y.F., Sung, H. Te, Chiueh, P. Te, Lo, S.L., “Co-torrefaction of sewage sludge and leucaena by using microwave heating”, Energy, 116: 1-7, (2016).
  • [47] Zhang, X., Zhang, L., Li, A., “Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization”, Journal of Environmental Management, 201: 52-62, (2017).
  • [48] Huang, Y.F., Shih, C.H., Chiueh, P. Te, Lo, S.L., “Microwave co-pyrolysis of sewage sludge and rice straw”, Energy, 87: 638-644, (2015).
  • [49] Isemin, R., Klimov, D., Larina, O., Sytchev, G., Zaichenko, V., Milovanov, O., “Application of torrefaction for recycling bio-waste formed during anaerobic digestion”, Fuel, 243: 230-239, (2019).
  • [50] Zheng, C., Ma, X., Yao, Z., Chen, X., “The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste”, Bioresource Technology, 285: 121347, (2019).
  • [51] Zhai, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G., Zhu, Y., “Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling”, Energy, 127: 167-174, (2017).
  • [52] Mamvura, T.A., Pahla, G., Muzenda, E., “Torrefaction of waste biomass for application in energy production in South Africa”, South African Journal of Chemical Engineering, 25: 1-12, (2018).
  • [53] Mock, C., Lee, H., Choi, S., Manovic, V., “Flame structures and ignition characteristics of torrefied and raw sewage sludge particles at rapid heating rates”, Fuel, 200: 467-480, (2017).
  • [54] Magalhaes, D., Kazanc, F., “Influence of biomass thermal pre-treatment on the particulate matter formation during pulverized co-combustion with lignite coal”, Fuel, 308: 122027, (2022).
  • [55] Chen, R., Sheng, Q., Dai, X., Dong, B., “Upgrading of sewage sludge by low temperature pyrolysis: Biochar fuel properties and combustion behavior”, Fuel, 300: 121007, (2021).
  • [56] Zhang, C., Ho, S.H., Chen, W.H., Fu, Y., Chang, J.S., Bi, X., “Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage”, Applied Energy, 235: 428–441, (2019).
  • [57] Ghodke, P.K., Sharma, A.K., Pandey, J.K., Chen, W.H., Patel, A., Ashokkumar, V., “Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production”, Journal of Environmental Management, 298: 113450, (2021).
  • [58] Gao, N., Kamran, K., Quan, C., Williams, P.T., “Thermochemical conversion of sewage sludge: A critical review”, Progress in Energy and Combustion Science, 79: 100843, (2020).
  • [59] Di Bitonto, L., Todisco, S., Gallo, V., Pastore C., “Urban sewage scum and primary sludge as profitable sources of biodiesel and biolubricants of new generation”, Bioresource Technology Reports, 9:100382, (2020).
  • [60] Gao, N., Li, J., Qi, B., Li, A., Duan, Y., Wang, Z., “Thermal analysis and products distribution of dried sewage sludge pyrolysis”, Journal of Analytical and Applied Pyrolysis, 105: 43-48, (2014).
  • [61] Yao, X., Zhou, H., Xu, K., Xu, Q., Li, L., “Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust”, Renewable Energy, 145: 835–846, (2020).
  • [62] Wang, T., Cai, C., Xue, Y., Xiao, Y., Chen, S., Liu, J., Mei, M., Li, J., “Regulation of ash slagging behavior for sewage sludge by rice husk addition: Focusing on control mechanisms”, Journal of Cleaner Production, 284: 124677, (2021).
  • [63] Folgueras, M.B., Alonso, M., Folgueras, J.R., “Modification of lignite ash fusion temperatures by the addition of different types of sewage sludge”, Fuel Processing Technology, 131: 348-355, (2015).
  • [64] Zhou, A., Wang, X., Magdziarz, A., Yu, S., Deng, S., Bai, J., Zhang, Q., Tan, H., “Ash fusion and mineral evolution during the co-firing of coal and municipal sewage sludge in power plants”, Fuel, 310: 122416, (2022).
  • [65] Fan, H., Li, F., Guo, Q., Guo, M., “Effect of biomass ash on initial sintering and fusion characteristics of high melting coal ash”, Journal of the Energy Institute, 94: 129-138, (2021).
  • [66] Ozer, M., Basha, O.M., Stiegel, G., Morsi, B., “Effect of coal nature on the gasification process”, Integrated Gasification Combined Cycle (IGCC) Technologies, Woodhead Publishing, 257-304, (2017).
  • [67] Miller, B.G., “Introduction to Coal Utilization Technologies”, Clean Coal Engineering Technology, 147-229, (2017).
  • [68] Wang, X., Chi, Q., Liu, X., Wang, Y., “Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge”, Chemosphere, 216: 698-706, (2019).
  • [69] Liu, Y., Huang, J., Xu, H., Zhang, Y., Hu, T., Chen, W., Hu, H., Wu, J., Li, Y., Jiang, G., “A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil”, Chemical Engineering Journal, 390: 124638, (2020).
  • [70] Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., Gao, B., “Biochar amendment improves crop production in problem soils: A review”, Journal of Environmental Management, 232: 8–21, (2019).
  • [71] Tang, J., Zhang, S., Zhang, X., Chen, J., He, X., Zhang, Q., “Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil”, Science of the Total Environment, 731: 138938, (2020).
  • [72] He, J., Strezov, V., Zhou, X., Kumar, R., Kan, T., “Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: Product characterisation and heavy metal deportment”, Bioresource Technology, 313: 123641, (2020).
  • [73] Zhang, J., Jin, J., Wang, M., Naidu, R., Liu, Y., Man, Y.B., Liang, X., Wong, M.H., Christie, P., Zhang, Y., Song, C., Shan, S., “Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility”, Environmental Research, 191: 110034, (2020).
  • [74] Wang, Z., Shen, R., Ji, S., Xie, L., Zhang, H., “Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil”, Journal of Hazardous Materials, 419: 126468, (2021).
  • [75] Wang, X., Chang, V.W.C., Li, Z., Chen, Z., Wang, Y., “Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals”, Journal of Hazardous Materials, 412: 125200, (2021).
  • [76] Waqas, M., Khan, S., Qing, H., Reid, B.J., Chao, C., “The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L.”, Chemosphere, 105: 53-61, (2014).
  • [77] Malińska, K., Zabochnicka-Światek, M., Cáceres, R., and Marfà, O., “The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting”, Ecological Engineering, 90: 35-41, (2016).
  • [78] Gopinath, A., Divyapriya, G., Srivastava, V., Laiju, A.R., Nidheesh, P. V., Kumar, M.S., “Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment”, Environmental Research, 194: 110656, (2021).
  • [79] Figueiredo, C.C. de, Reis, A. de S.P.J., Araujo, A.S. de, Blum, L.E.B., Shah, K., Paz-Ferreiro, J., “Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influence of extractant solutions and pyrolysis temperatures”, Waste Management, 124: 144-153, (2021).
  • [80] Velli, P., Manolikaki, I., Diamadopoulos, E., “Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations”, Journal of Environmental Management, 297: 113325, (2021).
  • [81] Chagas, J.K.M., Figueiredo, C.C. de, Paz-Ferreiro, J., “Sewage sludge biochars effects on corn response and nutrition and on soil properties in a 5-yr field experiment”, Geoderma, 401: 115323, (2021).
Year 2024, Volume: 37 Issue: 2, 556 - 574, 01.06.2024
https://doi.org/10.35378/gujs.1063502

Abstract

References

  • [1] Iroba, K.L., Baik, O.D., Tabil, L.G., “Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption”, Biomass and Bioenergy, 106: 8-20, (2017).
  • [2] Nam, H., Capareda, S., “Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology)”, Energy, 91: 507-516, (2015).
  • [3] Cai, J., He, Y., Yu, X., Banks, S.W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A. V., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass”, Renewable and Sustainable Energy Reviews, 76: 309-322, (2017).
  • [4] Dhanavath, K.N., Bankupalli, S., Bhargava, S.K., Parthasarathy, R., “An experimental study to investigate the effect of torrefaction temperature on the kinetics of gas generation”, Journal of Environmental Chemical Engineering, 6(2): 3332-3341, (2018).
  • [5] Matali, S., Rahman, N.A., Idris, S.S., Yaacob, N., Alias, A.B., “Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction”, Procedia Engineering, 148: 671-678, (2016).
  • [6] Stelt, M.J.C. Van der, Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J., “Biomass upgrading by torrefaction for the production of biofuels: A review”, Biomass and Bioenergy, 35(9): 3748-3762, (2011).
  • [7] Buratti, C., Barbanera, M., Lascaro, E., Cotana, F., “Optimization of torrefaction conditions of coffee industry residues using desirability function approach”, Waste Management, 73: 523-534, (2018).
  • [8] Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J., “Effects of torrefaction process parameters on biomass feedstock upgrading”, Fuel, 91(1): 147-154, (2012).
  • [9] Batidzirai, B., Mignot, A.P.R., Schakel, W.B., Junginger, H.M., Faaij, A.P.C., “Biomass torrefaction technology: Techno-economic status and future prospects”, Energy, 62: 196–214, (2013).
  • [10] Deng, J., Wang, G. jun, Kuang, J. hong, Zhang, Y. liang, Luo, Y. hao, “Pretreatment of agricultural residues for co-gasification via torrefaction”, Journal of Analytical and Applied Pyrolysis, 86(2): 331-337, (2009).
  • [11] Cao, Y., Pawłowski, A., “Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment”, Renewable and Sustainable Energy Reviews, 16(3): 1657-1665, (2012).
  • [12] Jiang, L., Liang, J., Yuan, X., Li, H., Li, C., Xiao, Z., Huang, H., Wang, H., Zeng, G., “Co-pelletization of sewage sludge and biomass: The density and hardness of pellet”, Bioresource Technology, 166: 435-43, (2014).
  • [13] Adar, E., Karatop, B., Ince, M., Bilgili, M.S., “Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis”, Renewable and Sustainable Energy Reviews, 62: 429-440, (2016).
  • [14] Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xiang, J., “Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations”, Renewable and Sustainable Energy Reviews, 80: 888-913, (2017).
  • [15] TUIK, “Waste Statistics, Turkish Statistical Institute Waste Statistics”, (2020).
  • [16] Ren, J., Liang, H., Chan, F.T.S., “Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method”, Technological Forecasting and Social Change, 116: 29-39, (2017).
  • [17] Jin, J., Wang, M., Cao, Y., Wu, S., Liang, P., Li, Y., Zhang, J., Zhang, J., Wong, M.H., Shan, S., Christie, P., “Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals”, Bioresource Technology, 228: 218-226, (2017).
  • [18] Chan, W.P., Wang, J.Y., “Formation of synthetic sludge as a representative tool for thermochemical conversion modelling and performance analysis of sewage sludge – Based on a TG-FTIR study”, Journal of Analytical and Applied Pyrolysis, 133: 97-106, (2018).
  • [19] Huang, Y.W., Chen, M.Q., Luo, H.F., “Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model”, Chemical Engineering Journal, 298: 154-161, (2016).
  • [20] Zhang, Q., Hu, J., Lee, D.J., Chang, Y., Lee, Y.J., “Sludge treatment: Current research trends”, Bioresource Technology, 243: 1159-1172, (2017).
  • [21] Pahla, G., Ntuli, F., Muzenda, E., “Torrefaction of landfill food waste for possible application in biomass co-firing”, Waste Management, 71: 512-520, (2018).
  • [22] Fakayode, O.A., Aboagarib, E.A.A., Zhou, C., Ma, H., “Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – A review”, Bioresource Technology, 297: 122408, (2020).
  • [23] Kwon, G., Bhatnagar, A., Wang, H., Kwon, E.E., Song, H., “A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar”, Journal of Hazardous Materials, 400: 123242, (2020).
  • [24] Atienza-Martínez, M., Rubio, I., Fonts, I., Ceamanos, J., Gea, G., “Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using γ-Al2O3”, Chemical Engineering Journal, 308: 264-274, (2017).
  • [25] Atienza-Martínez, M., Fonts, I., Lázaro, L., Ceamanos, J., Gea, G., “Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor”, Chemical Engineering Journal, 259: 467-480, (2015).
  • [26] Wang, Z., Lim, C.J., Grace, J.R., Li, H., Parise, M.R., “Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor”, Bioresource Technology, 244: 281-288, (2017).
  • [27] Wilk, M., Magdziarz, A., Kalemba, I., “Characterisation of renewable fuels’ torrefaction process with different instrumental techniques”, Energy, 87: 259-269, (2015).
  • [28] Piersa, P., Szufa, S., Czerwińska, J., Ünyay, H., Adrian, Ł., Wielgosinski, G., Obraniak, A., Lewandowska, W., Marczak-Grzesik, M., Dzikuć, M., Zdzislawa Romanowska-Duda Z., Olejnik, T. P., “Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers”, Energies, 14(23): 8176, (2021).
  • [29] Hernández, A.B., Okonta, F., Freeman, N., “Sewage sludge charcoal production by N2- and CO2-torrefaction”, Journal of Environmental Chemical Engineering, 5(5): 4406-4414, (2017).
  • [30] Atienza-Martínez, M., Fonts, I., ábrego, J., Ceamanos, J., Gea, G., “Sewage sludge torrefaction in a fluidized bed reactor”, Chemical Engineering Journal, 222: 534-545, (2013).
  • [31] Poudel, J., Ohm, T.I., Lee, S.H., Oh, S.C., “A study on torrefaction of sewage sludge to enhance solid fuel qualities”, Waste Management, 40: 112-118, (2015).
  • [32] Rambo, M.K.D., Schmidt, F.L., Ferreira, M.M.C., “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities”, Talanta, 144: 696-703, (2015).
  • [33] Singh, Y.D., Mahanta, P., Bora, U., “Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production”, Renewable Energy, 103: 490-500, (2017).
  • [34] Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., Pasieczna-Patkowska, S., “Effect of sewage sludge properties on the biochar characteristic”, Journal of Analytical and Applied Pyrolysis, 112: 201-213, (2015).
  • [35] Singh, K., Zondlo, J., “Characterization of fuel properties for coal and torrefied biomass mixtures”, Journal of the Energy Institute, 90(4): 505-512, (2017).
  • [36] Du, J., Zhang, L., Ali, A., Li, R., Xiao, R., Guo, D., Liu, X., Zhang, Z., Ren, C., Zhang, Z., “Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars”, Process Safety and Environmental Protection, 125: 260-268, (2019).
  • [37] Li, S.X., Zou, J.Y., Li, M.F., Wu, X.F., Bian, J., Xue, Z.M., “Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction”, Energy, 124: 321-329, (2017).
  • [38] Chiou, B. Sen, Valenzuela-Medina, D., Bilbao-Sainz, C., Klamczynski, A.K., Avena-Bustillos, R.J., Milczarek, R.R., Du, W.X., Glenn, G.M., Orts, W.J., “Torrefaction of pomaces and nut shells”, Bioresource Technology, 177: 58-65, (2015).
  • [39] Chen, W.H., Kuo, P.C., “Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass”, Energy, 36(2): 803-811, (2011).
  • [40] Chen, X., Tang, J., Tian, X., Wang, L., “Influence of biomass addition on Jincheng coal ash fusion temperatures”, Fuel, 160: 614-620, (2015).
  • [41] Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Lasode, O.A., Malathi, M., Paswan, D., “The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass”, Heliyon, 6(3): e03582, (2020).
  • [42] Wenjing, T., Qin, J., Liu, J., Liu, F., Gu, L., “Effects of pine sawdust and shrimp shell biochar on anaerobic digestion under different acidification conditions”, Journal of Environmental Chemical Engineering, 10(1): 106581, (2021).
  • [43] Wilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., Gökalp, I., “Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study”, Biomass and Bioenergy, 120: 166-175, (2019).
  • [44] Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G., “Torrefaction of wood. Part 2. Analysis of products”, Journal of Analytical and Applied Pyrolysis, 77(1): 35-40, (2006).
  • [45] Gupta, G.K., Mondal, M.K., “Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology”, Energy, 170: 423-437, (2019).
  • [46] Huang, Y.F., Sung, H. Te, Chiueh, P. Te, Lo, S.L., “Co-torrefaction of sewage sludge and leucaena by using microwave heating”, Energy, 116: 1-7, (2016).
  • [47] Zhang, X., Zhang, L., Li, A., “Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization”, Journal of Environmental Management, 201: 52-62, (2017).
  • [48] Huang, Y.F., Shih, C.H., Chiueh, P. Te, Lo, S.L., “Microwave co-pyrolysis of sewage sludge and rice straw”, Energy, 87: 638-644, (2015).
  • [49] Isemin, R., Klimov, D., Larina, O., Sytchev, G., Zaichenko, V., Milovanov, O., “Application of torrefaction for recycling bio-waste formed during anaerobic digestion”, Fuel, 243: 230-239, (2019).
  • [50] Zheng, C., Ma, X., Yao, Z., Chen, X., “The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste”, Bioresource Technology, 285: 121347, (2019).
  • [51] Zhai, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G., Zhu, Y., “Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling”, Energy, 127: 167-174, (2017).
  • [52] Mamvura, T.A., Pahla, G., Muzenda, E., “Torrefaction of waste biomass for application in energy production in South Africa”, South African Journal of Chemical Engineering, 25: 1-12, (2018).
  • [53] Mock, C., Lee, H., Choi, S., Manovic, V., “Flame structures and ignition characteristics of torrefied and raw sewage sludge particles at rapid heating rates”, Fuel, 200: 467-480, (2017).
  • [54] Magalhaes, D., Kazanc, F., “Influence of biomass thermal pre-treatment on the particulate matter formation during pulverized co-combustion with lignite coal”, Fuel, 308: 122027, (2022).
  • [55] Chen, R., Sheng, Q., Dai, X., Dong, B., “Upgrading of sewage sludge by low temperature pyrolysis: Biochar fuel properties and combustion behavior”, Fuel, 300: 121007, (2021).
  • [56] Zhang, C., Ho, S.H., Chen, W.H., Fu, Y., Chang, J.S., Bi, X., “Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage”, Applied Energy, 235: 428–441, (2019).
  • [57] Ghodke, P.K., Sharma, A.K., Pandey, J.K., Chen, W.H., Patel, A., Ashokkumar, V., “Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production”, Journal of Environmental Management, 298: 113450, (2021).
  • [58] Gao, N., Kamran, K., Quan, C., Williams, P.T., “Thermochemical conversion of sewage sludge: A critical review”, Progress in Energy and Combustion Science, 79: 100843, (2020).
  • [59] Di Bitonto, L., Todisco, S., Gallo, V., Pastore C., “Urban sewage scum and primary sludge as profitable sources of biodiesel and biolubricants of new generation”, Bioresource Technology Reports, 9:100382, (2020).
  • [60] Gao, N., Li, J., Qi, B., Li, A., Duan, Y., Wang, Z., “Thermal analysis and products distribution of dried sewage sludge pyrolysis”, Journal of Analytical and Applied Pyrolysis, 105: 43-48, (2014).
  • [61] Yao, X., Zhou, H., Xu, K., Xu, Q., Li, L., “Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust”, Renewable Energy, 145: 835–846, (2020).
  • [62] Wang, T., Cai, C., Xue, Y., Xiao, Y., Chen, S., Liu, J., Mei, M., Li, J., “Regulation of ash slagging behavior for sewage sludge by rice husk addition: Focusing on control mechanisms”, Journal of Cleaner Production, 284: 124677, (2021).
  • [63] Folgueras, M.B., Alonso, M., Folgueras, J.R., “Modification of lignite ash fusion temperatures by the addition of different types of sewage sludge”, Fuel Processing Technology, 131: 348-355, (2015).
  • [64] Zhou, A., Wang, X., Magdziarz, A., Yu, S., Deng, S., Bai, J., Zhang, Q., Tan, H., “Ash fusion and mineral evolution during the co-firing of coal and municipal sewage sludge in power plants”, Fuel, 310: 122416, (2022).
  • [65] Fan, H., Li, F., Guo, Q., Guo, M., “Effect of biomass ash on initial sintering and fusion characteristics of high melting coal ash”, Journal of the Energy Institute, 94: 129-138, (2021).
  • [66] Ozer, M., Basha, O.M., Stiegel, G., Morsi, B., “Effect of coal nature on the gasification process”, Integrated Gasification Combined Cycle (IGCC) Technologies, Woodhead Publishing, 257-304, (2017).
  • [67] Miller, B.G., “Introduction to Coal Utilization Technologies”, Clean Coal Engineering Technology, 147-229, (2017).
  • [68] Wang, X., Chi, Q., Liu, X., Wang, Y., “Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge”, Chemosphere, 216: 698-706, (2019).
  • [69] Liu, Y., Huang, J., Xu, H., Zhang, Y., Hu, T., Chen, W., Hu, H., Wu, J., Li, Y., Jiang, G., “A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil”, Chemical Engineering Journal, 390: 124638, (2020).
  • [70] Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., Gao, B., “Biochar amendment improves crop production in problem soils: A review”, Journal of Environmental Management, 232: 8–21, (2019).
  • [71] Tang, J., Zhang, S., Zhang, X., Chen, J., He, X., Zhang, Q., “Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil”, Science of the Total Environment, 731: 138938, (2020).
  • [72] He, J., Strezov, V., Zhou, X., Kumar, R., Kan, T., “Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: Product characterisation and heavy metal deportment”, Bioresource Technology, 313: 123641, (2020).
  • [73] Zhang, J., Jin, J., Wang, M., Naidu, R., Liu, Y., Man, Y.B., Liang, X., Wong, M.H., Christie, P., Zhang, Y., Song, C., Shan, S., “Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility”, Environmental Research, 191: 110034, (2020).
  • [74] Wang, Z., Shen, R., Ji, S., Xie, L., Zhang, H., “Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil”, Journal of Hazardous Materials, 419: 126468, (2021).
  • [75] Wang, X., Chang, V.W.C., Li, Z., Chen, Z., Wang, Y., “Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals”, Journal of Hazardous Materials, 412: 125200, (2021).
  • [76] Waqas, M., Khan, S., Qing, H., Reid, B.J., Chao, C., “The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L.”, Chemosphere, 105: 53-61, (2014).
  • [77] Malińska, K., Zabochnicka-Światek, M., Cáceres, R., and Marfà, O., “The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting”, Ecological Engineering, 90: 35-41, (2016).
  • [78] Gopinath, A., Divyapriya, G., Srivastava, V., Laiju, A.R., Nidheesh, P. V., Kumar, M.S., “Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment”, Environmental Research, 194: 110656, (2021).
  • [79] Figueiredo, C.C. de, Reis, A. de S.P.J., Araujo, A.S. de, Blum, L.E.B., Shah, K., Paz-Ferreiro, J., “Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influence of extractant solutions and pyrolysis temperatures”, Waste Management, 124: 144-153, (2021).
  • [80] Velli, P., Manolikaki, I., Diamadopoulos, E., “Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations”, Journal of Environmental Management, 297: 113325, (2021).
  • [81] Chagas, J.K.M., Figueiredo, C.C. de, Paz-Ferreiro, J., “Sewage sludge biochars effects on corn response and nutrition and on soil properties in a 5-yr field experiment”, Geoderma, 401: 115323, (2021).
There are 81 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemical Engineering
Authors

Elif Gödekmerdan 0000-0002-7963-6321

Günnur Kocar 0000-0003-1142-8574

Early Pub Date April 20, 2024
Publication Date June 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 2

Cite

APA Gödekmerdan, E., & Kocar, G. (2024). Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality. Gazi University Journal of Science, 37(2), 556-574. https://doi.org/10.35378/gujs.1063502
AMA Gödekmerdan E, Kocar G. Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality. Gazi University Journal of Science. June 2024;37(2):556-574. doi:10.35378/gujs.1063502
Chicago Gödekmerdan, Elif, and Günnur Kocar. “Valorization of Sewage Sludge With Pine Sawdust As Biochar: Optimization of the Torrefaction Conditions and Biochar Quality”. Gazi University Journal of Science 37, no. 2 (June 2024): 556-74. https://doi.org/10.35378/gujs.1063502.
EndNote Gödekmerdan E, Kocar G (June 1, 2024) Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality. Gazi University Journal of Science 37 2 556–574.
IEEE E. Gödekmerdan and G. Kocar, “Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality”, Gazi University Journal of Science, vol. 37, no. 2, pp. 556–574, 2024, doi: 10.35378/gujs.1063502.
ISNAD Gödekmerdan, Elif - Kocar, Günnur. “Valorization of Sewage Sludge With Pine Sawdust As Biochar: Optimization of the Torrefaction Conditions and Biochar Quality”. Gazi University Journal of Science 37/2 (June 2024), 556-574. https://doi.org/10.35378/gujs.1063502.
JAMA Gödekmerdan E, Kocar G. Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality. Gazi University Journal of Science. 2024;37:556–574.
MLA Gödekmerdan, Elif and Günnur Kocar. “Valorization of Sewage Sludge With Pine Sawdust As Biochar: Optimization of the Torrefaction Conditions and Biochar Quality”. Gazi University Journal of Science, vol. 37, no. 2, 2024, pp. 556-74, doi:10.35378/gujs.1063502.
Vancouver Gödekmerdan E, Kocar G. Valorization of Sewage Sludge with Pine Sawdust as Biochar: Optimization of the Torrefaction Conditions and Biochar Quality. Gazi University Journal of Science. 2024;37(2):556-74.