Structural and Ammonia Adsorption Properties of the Gördes Clinoptilolite After HCl Acid Treatment
Year 2024,
Volume: 37 Issue: 4, 1902 - 1916, 01.12.2024
Orkun Ergürhan
,
Burcu Erdoğan
Abstract
The effect of activation with HCl on the ammonia adsorption characteristics of natural Gördes clinoptilolite was studied in order to evaluate the usability of this mineral in various environments where ammonia removal is required, such as livestock facilities. Clinoptilolite was treated with HCl solutions (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 M) at 90°C for 4 h. XRD, XRF, FT-IR, TGA, DTA and N2 adsorption techniques were used for structural and thermal characterization of the adsorbents. NH3 adsorption isotherms were measured volumetric analysis at 298 K up to 100 kPa. Acid activation not only caused textural and structural changes such as removal of exchangeable cations but also affected the thermal behavior and gas retention of the clinoptilolite. Nitrogen adsorption results showed that it is possible to improve the specific surface area and micropore area values of clinoptilolite with acid activation up to 1.5 M. In addition, the NH3 adsorption capacities of clinoptilolite samples (4.33-5.01 mmol.g-1) were compared with the ammonia removal data of natural and synthetic zeolites (1.77 - 9.32 mmol.g-1) reported in previous studies.
Supporting Institution
Eskişehir Teknik Üniversitesi BAP Komisyonu
Thanks
Financial support from the Eskisehir Technical University Commission of Scientific Research Project under Grant No. 20ADP225, is gratefully acknowledged.
References
- [1] Kampa, M., and Castanas, E., “Human health effects of air pollution”, Environmental Pollution, 151(2): 362-367, (2008).
- [2] Lindgren, T., “A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing”, Building and Environment, 45(3): 596-600, (2010).
- [3] Ciahotný, K., Melenová, L., Jirglová, H., Pachtová, O., Kočiřík, M., and Eić, M., “Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms”, Adsorption, 12: 219-226, (2006).
- [4] Li, X., Lin, C., Wang, Y., Zhao, M., and Hou, Y., “Clinoptilolite adsorption capability of ammonia in pig farm”, Procedia Environmental Sciences, 2: 1598-1612, (2010).
- [5] Max, A., Ammonia, 1. Introduction. In C. Ley (Ed.), Ullmann's encyclopedia of industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 1-54, (2011).
- [6] Drummond, J. G., Curtis, S. E., Simon, J., and Norton, H. W., “Effects of aerial ammonia on growth and health of young pigs”, Journal of Animal Science, 50(6): 1085-1091, (1980).
- [7] Ryer-Powder, J. E., “Health effects of ammonia”, Plant/Operations Progress, 10(4): 228-232, (1991).
- [8] World Health Organization: “Ammonia. Environ Health Critter”, 54: 1– 210, (1986)
- [9] McCubbin, D. R., Apelberg, B. J., Roe, S., and Divita, F., “Livestock ammonia management and particulate-related health benefits”, Environmental Science & Technology, 36(6): 1141-1146, (2002).
- [10] Sutton, M. A., van Dijk, N., Levy, P. E., Jones, M. R., Leith, I. D., Sheppard, L. J., Leeson, S., Sim, T. Y., Stephens, A., Braban, C. F., Dragosits, U., Howard, C. M., Vieno, M., Fowler, D., Corbett, P., Naikoo, M. I., Munzi, S., Ellis, C. J., Chatterjee, S., Steadman, C. E., Móring, A., and Wolseley, P. A., “Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world”, Philosophical Transactions of the Royal Society A, 378(20183): 20190315, (2020).
- [11] Passaglia, E., and Sheppard, R. A., “The Crystal Chemistry of Zeolites”, Reviews in Mineralogy and Geochemistry, 45(1): 69-116, (2001).
- [12] Elaiopoulos, K., Perraki, T., and Grigoropoulou, E., “Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis”, Microporous and Mesoporous Materials, 134(1-3): 29-43, (2010).
- [13] Gottardi, G., and Galli, E., Natural zeolites, Springer, Berlin, (1985).
- [14] Mumpton, F. A., “Clinoptilolite redefined”, American Mineralogist, 45(3-4): 351-369, (1960).
- [15] Smyth, J. R., Spaid, A. T., and Bish, D. L., “Crystal structures of a natural and a Cs-exchanged clinoptilolite”, American Mineralogist, 75: 522–528, (1990).
- [16] Ackley, M. W., Giese, R. F., and Yang, R. T., “Clinoptilolite: Untapped potential for kinetics gas separations”, Zeolites, 12(7): 780-788, (1992).
- [17] Jayaraman, A., Yang, R. T., Chinn, D., and Munson, C. L., “Tailored clinoptilolites for nitrogen/methane separation”, Industrial & Engineering Chemistry Research, 44(14): 5184-5192, (2005).
- [18] Kennedy, D. A., and Tezel, F. H., “Cation exchange modification of clinoptilolite – Screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide”, Microporous and Mesoporous Materials, 262: 235-250, (2018).
- [19] Ghahri, A., Golbabaei, F., Vafajoo, L., Mireskandari, S. M., Yaseri, M., and Shahtaheri, S. J., “Removal of Greenhouse Gas (N2O) by Catalytic Decomposition on Natural Clinoptilolite Zeolites Impregnated with Cobalt”, International Journal of Environmental Research, 11: 327-337, (2017).
- [20] Karousos, D. S., Sapalidis, A. A., Kouvelos, E. P., Romanos, G. E., and Kanellopoulos, N. K., “A study on natural clinoptilolite for CO2/N2 gas separation”, Separation Science and Technology, 51(1): 83-95, (2016).
- [21] Macala, J., Pandova, I., and Panda, A., “Clinoptilolite as a mineral usable for cleaning of exhaust gases”, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 25(4): 23-32, (2009).
- [22] Meimand, M. M., Javid, N., and Malakootian, M., “Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite”, Health Scope, 8(2): e69158, (2019).
- [23] Pour, A. A., Sharifnia, S., NeishaboriSalehi, R., and Ghodrati, M., “Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture”, Journal of Natural Gas Science and Engineering, 26: 1246-1253, (2015).
- [24] Yasyerli, S., Ar, I., Dogu, G., and Dogu, T., “Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber”, Chemical Engineering and Processing-Process Intensification, 41(9): 785-792, (2002).
- [25] Allen, S. J., Ivanova, E., and Koumanova, B., “Adsorption of sulfur dioxide on chemically modified natural clinoptilolite”, Acid modification. Chemical Engineering Journal, 152(2-3): 389-395, (2009).
- [26] Christidis, G. E., Moraetis, D., Keheyan, E., Akhalbedashvili, L., Kekelidze, N., Gevorkyan, R., Yeritsyan,H., and Sargsyan, H., “Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece”, Applied Clay Science, 24(1-2): 79-91, (2003).
- [27] Ates, A., and Hardacre, C., “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments”, Journal of Colloid and Interface Science, 372(1): 130-140, (2012).
- [28] Rozic, M., Cerjan-Stefanovic, S., Kurajica, S., Maeefat, M. R., Margeta, K., and Farkas, A., “Decationization and dealumination of clinoptilolite tuff and ammonium exchange on acid-modified tuff”, Journal of Colloid and Interface Science, 284(1): 48-56, (2005).
- [29] Erdoğan Alver, B., “A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: Effect of acid treatment”, Journal of Hazardous Materials, 262: 627-633, (2013).
- [30] Amon, M., Dobeic, M., Sneath, R. W., Phillips, V. R., Misselbrook, T. H., and Pain, B. F., “A farm-scale study on the use of clinoptilolite zeolite and De-Odorase® for reducing odour and ammonia emissions from broiler houses”, Bioresource Technology, 61(3): 229-237, (1997).
- [31] Bernal, M. P., and Lopez-Real, J. M., “Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials”, Bioresource Technology, 43(1): 27-33, (1993).
- [32] Bernal, M. P., Lopez-Real, J. M., and Scott, K. M., “Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator”, Bioresource Technology, 43(1): 35-39, (1993).
- [33] Caputo, D., de Gennaro, B., Liguori, B., Pansini, M., and Colella, C., “Adsorption properties of clinoptilolite-rich tuff from Thrace, NE Greece”, Oxide-based Systems at the Crossroads of Chemistry - Second International Workshop, Como, Italy, 121-129, (2000).
- [34] Ciahotný, K., Melenová, L., Jirglová, H., Boldiš, M., and Kočiřík, M., “Sorption of ammonia from gas streams on clinoptilolite impregnated with inorganic acids”, Studies in Surface Science and Catalysis, 142: 1713-1720, (2002).
- [35] Helminen, J., Helenius, J., Paatero, E., and Turunen, I., “Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K”, Journal of Chemical and Engineering Data, 46(2): 391-399, (2001).
- [36] Milovanovic, J., Eich-Greatorex, S., Krogstad, T., Rakic, V., and Rajic, N., “The use in grass production of clinoptilolite as an ammonia adsorbent and a nitrogen carrier”, Journal of the Serbian Chemical Society, 80(9): 1203-1214, (2015).
- [37] Tehrani, R. M. A., and Salari, A. A., “The study of dehumidifying of carbon monoxide and ammonia adsorption by Iranian natural clinoptilolite zeolite”, Applied Surface Science, 252(3): 866-870, (2005).
- [38] Radosavljevic-Mihajlovic, A. S., Dondur, V. T, Daković, A., Lemic J. B., and Tomasevic-Canovic, M. R., “Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid”, Journal of the Serbian Chemical Society, 69(4): 273-282, (2004).
- [39] Arcoya, A., González, J., Travieso, N., and Seoane, X., “Physicochemical and catalytic properties of a modified natural clinoptilolite”, Clay Minerals, 29(1): 123-131, (1994).
- [40] Moore, D. M., and Reynolds Jr. R. C., X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, (1989).
- [41] Esenli F., and Sirkecioğlu A. “The relationship between zeolite (heulandite-clinoptilolite) content and the ammonium-exchange capacity of pyroclastic rocks in Gördes, Turkey.” Clay Minerals, 40: 557-564, (2005).
- [42] De Man, A. J. M., Ueda, S., Annen, M. J., Davis. M. E., and Van Santen. R. A., “The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs, Zeolites, 12(7): 789-800, (1992).
- [43] Akdeniz, Y., Ülkü, S., “Thermal stability of Ag-exchanged clinoptilolite rich mineral, Journal of Thermal Analysis and Calorimetry, 94(3): 703-710, (2008).
- [44] Salvestrini, S., Sagliano, P., Iovino, P., Capasso, S., and Colella, C., “Atrazine adsorption by acid-activated zeolite-rich tuffs”, Applied Clay Science, 49(3): 330-335, (2010).
- [45] Rodríguez-Fuentes, G., Ruiz-Salvador, A. R., Mir, M., Picazo, O., Quintana, G., and Delgado, M., “Thermal and cation influence on ir vibrations of modified natural clinoptilolite”, Microporous and Mesoporous Materials, 20(4-6): 269-281, (1998).
- [46] Dziedzicka, A., Sulikowski, B., and Ruggiero-Mikołajczyk, M., “Catalytic and physicochemical properties of modified natural clinoptilolite”, Catalysis Today, 259: 50-58, (2016).
- [47] Deka, R. C., “Acidity in zeolites and their characterization by different spectroscopic methods”, Indian Journal of Chemical Technology, 5: 109-123, (1998).
- [48] Bucko,T., and Benco, L., “Adsorption and vibrational spectroscopy of ammonia at mordenite: Ab initio study”, The Journal of Chemical Physics, 120(21): 10263-10277, (2004).
- [49] Lercher, J. A., Gründling, C., and Eder-Mirth, G., “Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules”, Catalysis Today, 27(3-4): 353-376, (1996).
- [50] Zecchina A., Marchese L., Bordiga, S., Pazè, C., and Gianotti E., “Vibrational Spectroscopy of NH4+ Ions in Zeolitic Materials: An IR Study”, The Journal of Physical Chemistry B, 101(48): 10128-10135. (1997).
- [51] Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, Sixth Edition, A John Wiley & Sons, Inc., Publication Hoboken, New Jersey, (2008).
- [52] Lowell S., Shields J. E., Thomas M. A. and Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht, Netherlands, (2004).
- [53] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., and Siemieniewska T., “Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity”, Pure and applied chemistry, 57(4): 603-619, (1985).
- [54] Reddy, K. S. N., Eapen, M. J., Soni, H. S., and Shiralkar, V. P., “Sorption properties of cation-exchanged beta zeolites”, The Journal of Physical Chemistry, 96: 7923-7928, (1992).
- [55] Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L. C., Llewellyn, P., Maurin, G., Lewis, D. W., Binions, R., Autie, M., and Ruiz-Salvador, A. R., “Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization”, Microporous and Mesoporous Materials, 135(1-3): 187-196, (2010).
- [56] Cakicioglu-Ozkan, F., and Ulku, S., “The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite”, Microporous and Mesoporous Materials, 77(1): 47-53, (2005).
- [57] Wang, X., and Nguyen, A. V., “Characterisation of electrokinetic properties of clinoptilolite before and after activation by sulphuric acid for treating CSG water”, Microporous and Mesoporous Materials, 220: 175-182, (2016).
- [58] Ciahotný, K., Melenová, L., Jirglová, H., Pachtová, O., Kočiřík, M., and Eić, M., “Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms”, Adsorption, 12: 219-226, (2006).
- [59] Król, M., “Natural vs. Synthetic Zeolites”, Crystals, 10(7): 622-630, (2020).
Year 2024,
Volume: 37 Issue: 4, 1902 - 1916, 01.12.2024
Orkun Ergürhan
,
Burcu Erdoğan
References
- [1] Kampa, M., and Castanas, E., “Human health effects of air pollution”, Environmental Pollution, 151(2): 362-367, (2008).
- [2] Lindgren, T., “A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing”, Building and Environment, 45(3): 596-600, (2010).
- [3] Ciahotný, K., Melenová, L., Jirglová, H., Pachtová, O., Kočiřík, M., and Eić, M., “Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms”, Adsorption, 12: 219-226, (2006).
- [4] Li, X., Lin, C., Wang, Y., Zhao, M., and Hou, Y., “Clinoptilolite adsorption capability of ammonia in pig farm”, Procedia Environmental Sciences, 2: 1598-1612, (2010).
- [5] Max, A., Ammonia, 1. Introduction. In C. Ley (Ed.), Ullmann's encyclopedia of industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 1-54, (2011).
- [6] Drummond, J. G., Curtis, S. E., Simon, J., and Norton, H. W., “Effects of aerial ammonia on growth and health of young pigs”, Journal of Animal Science, 50(6): 1085-1091, (1980).
- [7] Ryer-Powder, J. E., “Health effects of ammonia”, Plant/Operations Progress, 10(4): 228-232, (1991).
- [8] World Health Organization: “Ammonia. Environ Health Critter”, 54: 1– 210, (1986)
- [9] McCubbin, D. R., Apelberg, B. J., Roe, S., and Divita, F., “Livestock ammonia management and particulate-related health benefits”, Environmental Science & Technology, 36(6): 1141-1146, (2002).
- [10] Sutton, M. A., van Dijk, N., Levy, P. E., Jones, M. R., Leith, I. D., Sheppard, L. J., Leeson, S., Sim, T. Y., Stephens, A., Braban, C. F., Dragosits, U., Howard, C. M., Vieno, M., Fowler, D., Corbett, P., Naikoo, M. I., Munzi, S., Ellis, C. J., Chatterjee, S., Steadman, C. E., Móring, A., and Wolseley, P. A., “Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world”, Philosophical Transactions of the Royal Society A, 378(20183): 20190315, (2020).
- [11] Passaglia, E., and Sheppard, R. A., “The Crystal Chemistry of Zeolites”, Reviews in Mineralogy and Geochemistry, 45(1): 69-116, (2001).
- [12] Elaiopoulos, K., Perraki, T., and Grigoropoulou, E., “Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis”, Microporous and Mesoporous Materials, 134(1-3): 29-43, (2010).
- [13] Gottardi, G., and Galli, E., Natural zeolites, Springer, Berlin, (1985).
- [14] Mumpton, F. A., “Clinoptilolite redefined”, American Mineralogist, 45(3-4): 351-369, (1960).
- [15] Smyth, J. R., Spaid, A. T., and Bish, D. L., “Crystal structures of a natural and a Cs-exchanged clinoptilolite”, American Mineralogist, 75: 522–528, (1990).
- [16] Ackley, M. W., Giese, R. F., and Yang, R. T., “Clinoptilolite: Untapped potential for kinetics gas separations”, Zeolites, 12(7): 780-788, (1992).
- [17] Jayaraman, A., Yang, R. T., Chinn, D., and Munson, C. L., “Tailored clinoptilolites for nitrogen/methane separation”, Industrial & Engineering Chemistry Research, 44(14): 5184-5192, (2005).
- [18] Kennedy, D. A., and Tezel, F. H., “Cation exchange modification of clinoptilolite – Screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide”, Microporous and Mesoporous Materials, 262: 235-250, (2018).
- [19] Ghahri, A., Golbabaei, F., Vafajoo, L., Mireskandari, S. M., Yaseri, M., and Shahtaheri, S. J., “Removal of Greenhouse Gas (N2O) by Catalytic Decomposition on Natural Clinoptilolite Zeolites Impregnated with Cobalt”, International Journal of Environmental Research, 11: 327-337, (2017).
- [20] Karousos, D. S., Sapalidis, A. A., Kouvelos, E. P., Romanos, G. E., and Kanellopoulos, N. K., “A study on natural clinoptilolite for CO2/N2 gas separation”, Separation Science and Technology, 51(1): 83-95, (2016).
- [21] Macala, J., Pandova, I., and Panda, A., “Clinoptilolite as a mineral usable for cleaning of exhaust gases”, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 25(4): 23-32, (2009).
- [22] Meimand, M. M., Javid, N., and Malakootian, M., “Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite”, Health Scope, 8(2): e69158, (2019).
- [23] Pour, A. A., Sharifnia, S., NeishaboriSalehi, R., and Ghodrati, M., “Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture”, Journal of Natural Gas Science and Engineering, 26: 1246-1253, (2015).
- [24] Yasyerli, S., Ar, I., Dogu, G., and Dogu, T., “Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber”, Chemical Engineering and Processing-Process Intensification, 41(9): 785-792, (2002).
- [25] Allen, S. J., Ivanova, E., and Koumanova, B., “Adsorption of sulfur dioxide on chemically modified natural clinoptilolite”, Acid modification. Chemical Engineering Journal, 152(2-3): 389-395, (2009).
- [26] Christidis, G. E., Moraetis, D., Keheyan, E., Akhalbedashvili, L., Kekelidze, N., Gevorkyan, R., Yeritsyan,H., and Sargsyan, H., “Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece”, Applied Clay Science, 24(1-2): 79-91, (2003).
- [27] Ates, A., and Hardacre, C., “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments”, Journal of Colloid and Interface Science, 372(1): 130-140, (2012).
- [28] Rozic, M., Cerjan-Stefanovic, S., Kurajica, S., Maeefat, M. R., Margeta, K., and Farkas, A., “Decationization and dealumination of clinoptilolite tuff and ammonium exchange on acid-modified tuff”, Journal of Colloid and Interface Science, 284(1): 48-56, (2005).
- [29] Erdoğan Alver, B., “A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: Effect of acid treatment”, Journal of Hazardous Materials, 262: 627-633, (2013).
- [30] Amon, M., Dobeic, M., Sneath, R. W., Phillips, V. R., Misselbrook, T. H., and Pain, B. F., “A farm-scale study on the use of clinoptilolite zeolite and De-Odorase® for reducing odour and ammonia emissions from broiler houses”, Bioresource Technology, 61(3): 229-237, (1997).
- [31] Bernal, M. P., and Lopez-Real, J. M., “Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials”, Bioresource Technology, 43(1): 27-33, (1993).
- [32] Bernal, M. P., Lopez-Real, J. M., and Scott, K. M., “Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator”, Bioresource Technology, 43(1): 35-39, (1993).
- [33] Caputo, D., de Gennaro, B., Liguori, B., Pansini, M., and Colella, C., “Adsorption properties of clinoptilolite-rich tuff from Thrace, NE Greece”, Oxide-based Systems at the Crossroads of Chemistry - Second International Workshop, Como, Italy, 121-129, (2000).
- [34] Ciahotný, K., Melenová, L., Jirglová, H., Boldiš, M., and Kočiřík, M., “Sorption of ammonia from gas streams on clinoptilolite impregnated with inorganic acids”, Studies in Surface Science and Catalysis, 142: 1713-1720, (2002).
- [35] Helminen, J., Helenius, J., Paatero, E., and Turunen, I., “Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K”, Journal of Chemical and Engineering Data, 46(2): 391-399, (2001).
- [36] Milovanovic, J., Eich-Greatorex, S., Krogstad, T., Rakic, V., and Rajic, N., “The use in grass production of clinoptilolite as an ammonia adsorbent and a nitrogen carrier”, Journal of the Serbian Chemical Society, 80(9): 1203-1214, (2015).
- [37] Tehrani, R. M. A., and Salari, A. A., “The study of dehumidifying of carbon monoxide and ammonia adsorption by Iranian natural clinoptilolite zeolite”, Applied Surface Science, 252(3): 866-870, (2005).
- [38] Radosavljevic-Mihajlovic, A. S., Dondur, V. T, Daković, A., Lemic J. B., and Tomasevic-Canovic, M. R., “Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid”, Journal of the Serbian Chemical Society, 69(4): 273-282, (2004).
- [39] Arcoya, A., González, J., Travieso, N., and Seoane, X., “Physicochemical and catalytic properties of a modified natural clinoptilolite”, Clay Minerals, 29(1): 123-131, (1994).
- [40] Moore, D. M., and Reynolds Jr. R. C., X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, (1989).
- [41] Esenli F., and Sirkecioğlu A. “The relationship between zeolite (heulandite-clinoptilolite) content and the ammonium-exchange capacity of pyroclastic rocks in Gördes, Turkey.” Clay Minerals, 40: 557-564, (2005).
- [42] De Man, A. J. M., Ueda, S., Annen, M. J., Davis. M. E., and Van Santen. R. A., “The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs, Zeolites, 12(7): 789-800, (1992).
- [43] Akdeniz, Y., Ülkü, S., “Thermal stability of Ag-exchanged clinoptilolite rich mineral, Journal of Thermal Analysis and Calorimetry, 94(3): 703-710, (2008).
- [44] Salvestrini, S., Sagliano, P., Iovino, P., Capasso, S., and Colella, C., “Atrazine adsorption by acid-activated zeolite-rich tuffs”, Applied Clay Science, 49(3): 330-335, (2010).
- [45] Rodríguez-Fuentes, G., Ruiz-Salvador, A. R., Mir, M., Picazo, O., Quintana, G., and Delgado, M., “Thermal and cation influence on ir vibrations of modified natural clinoptilolite”, Microporous and Mesoporous Materials, 20(4-6): 269-281, (1998).
- [46] Dziedzicka, A., Sulikowski, B., and Ruggiero-Mikołajczyk, M., “Catalytic and physicochemical properties of modified natural clinoptilolite”, Catalysis Today, 259: 50-58, (2016).
- [47] Deka, R. C., “Acidity in zeolites and their characterization by different spectroscopic methods”, Indian Journal of Chemical Technology, 5: 109-123, (1998).
- [48] Bucko,T., and Benco, L., “Adsorption and vibrational spectroscopy of ammonia at mordenite: Ab initio study”, The Journal of Chemical Physics, 120(21): 10263-10277, (2004).
- [49] Lercher, J. A., Gründling, C., and Eder-Mirth, G., “Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules”, Catalysis Today, 27(3-4): 353-376, (1996).
- [50] Zecchina A., Marchese L., Bordiga, S., Pazè, C., and Gianotti E., “Vibrational Spectroscopy of NH4+ Ions in Zeolitic Materials: An IR Study”, The Journal of Physical Chemistry B, 101(48): 10128-10135. (1997).
- [51] Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, Sixth Edition, A John Wiley & Sons, Inc., Publication Hoboken, New Jersey, (2008).
- [52] Lowell S., Shields J. E., Thomas M. A. and Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht, Netherlands, (2004).
- [53] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., and Siemieniewska T., “Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity”, Pure and applied chemistry, 57(4): 603-619, (1985).
- [54] Reddy, K. S. N., Eapen, M. J., Soni, H. S., and Shiralkar, V. P., “Sorption properties of cation-exchanged beta zeolites”, The Journal of Physical Chemistry, 96: 7923-7928, (1992).
- [55] Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L. C., Llewellyn, P., Maurin, G., Lewis, D. W., Binions, R., Autie, M., and Ruiz-Salvador, A. R., “Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization”, Microporous and Mesoporous Materials, 135(1-3): 187-196, (2010).
- [56] Cakicioglu-Ozkan, F., and Ulku, S., “The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite”, Microporous and Mesoporous Materials, 77(1): 47-53, (2005).
- [57] Wang, X., and Nguyen, A. V., “Characterisation of electrokinetic properties of clinoptilolite before and after activation by sulphuric acid for treating CSG water”, Microporous and Mesoporous Materials, 220: 175-182, (2016).
- [58] Ciahotný, K., Melenová, L., Jirglová, H., Pachtová, O., Kočiřík, M., and Eić, M., “Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms”, Adsorption, 12: 219-226, (2006).
- [59] Król, M., “Natural vs. Synthetic Zeolites”, Crystals, 10(7): 622-630, (2020).