Research Article
BibTex RIS Cite

Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting

Year 2024, Volume: 37 Issue: 4, 1575 - 1594
https://doi.org/10.35378/gujs.1471707

Abstract

Nature is a database that offers potential solutions to humanity’s many problems with its countless living species and their developed adaptations. As in engineering, medicine, agriculture, etc., innovative approaches are sought in the discipline of architecture with the solution proposals offered by nature. Designers looking for creative solutions, especially in producing the most effective constructions with the most materials, providing energy efficiency in built environments, designing ecologically and harvesting water and developing methods that imitate and learn from nature. One of the main actors in the global agenda on climate change and the clean water problem is built environments. In this context, water harvesting methods to be developed through architectural design also emerge as one of the current research topics. In this paper, research has been conducted on how the water harvesting knowledge in nature can be integrated into architecture; A biomimetic shell proposal has been developed to provide atmospheric water gain. Firstly, the concept of biomimetics is clarified through a literature review and examples of water balance strategies of living things in nature are presented. Then, architectural examples inspired by these strategies are analyzed. The selected living organisms were analyzed in the field study section and a design concept that can harvest water on the building facade was developed based on the biological information obtained. Inspired by the water harvesting principles of cactus and Bromeliaceae plants, this design is presented as an alternative for water harvesting with different usage possibilities in built environments.

References

  • [1] Brown, P.S., Bhushan, B. “Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil”, Philosophical Transactions of the Royal Society A, 374, 20160135, (2016). DOI: https://doi.org/10.1098/rsta.2016.0135
  • [2] World Economic Forum, “Global Risks 2015, 10th Edition, Geneva”, Switzerland, Adress: https://www3.weforum.org/docs/WEF_Global_Risks_2015_Report15.pdf (2015).
  • [3] World Water, Water Scarcity Clock. Adress: https://worldwater.io/ (2024). Access date: 09.01.2024.
  • [4] https://www.sdg6data.org/en/indicator/6.1.1 Access date: 10.01.2024.
  • [5] Bhushan B. “Bioinspired water collection methods to supplement water supply”, Philosophical Transactions of the Royal Society A, 377, (2019). DOI: https://doi.org/10.1098/rsta.2019.0119
  • [6] Comanns, P. “Passive water collection with the integument: mechanisms and their biomimetic potential”, Journal of Experimental Biology, 221, (2018). DOI: https://doi.org/10.1242/jeb.153130
  • [7] Jiang, L., Guo, C., Fu, M., Gong, X., Ramakrishna, S., “Water harvesting on biomimetic material inspired by bettles”, Heliyon, 9(1): e12355, (2023). DOI: https://doi.org/10.1016/j.heliyon.2022.e12355
  • [8] Hou, Y., Chen, Y., Xue, Y., Zheng, Y., Jiang, L. “Water collection behavior and hanging ability of bioinspired fiber”, Langmuir, 13, 28(10): 4737-4743, (2012). DOI: https://doi.org/10.1021/la204682j
  • [9] Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., Fessehaye, G.M. “Fog as a fresh-water resource: overview and perspectives”, Ambio, 41(3): 221-34, (2012). DOI: https://doi.org/10.1007/s13280-012-0247-8
  • [10] Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S. “Fog water as an alternative and sustainable water resource”, Clean Technologies and Environmental Policy, 16(2): 235–249, (2014). DOI: https://doi.org/10.1007/s10098-013-0645-z
  • [11] Cao, M., Ju, J., Li, K., Dou, S., Liu, K., Jiang, L. “Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector”, Advanced Functional Materials, 24, 3235–3240, (2014). DOI: https://doi.org/10.1002/adfm.201303661
  • [12] Azad, M., Ellerbrok, D., Barthlott, W., Koch, K. “Fog collecting biomimetic surfaces: influence of microstructure and wettability”, Bioinspiration and Biomimetics, 10(1): 016004, (2015). DOI: https://doi.org/10.1088/1748-3190/10/1/016004
  • [13] Badarnah, L., Kadri, U. “A methodology for the generation of biomimetic design concepts, Architectural Science Review, 58(2), 120-133, (2015).
  • [14] Zhu, H., Guo, Z., Liu, W. “Biomimetic Water-Collecting Materials Inspired by Nature”, Chemical Communications, 52, (2016). DOI: https://doi.org/10.1039/C5CC09867J
  • [15] Wang, Y., Wang, X., Lai, C., Hu, H., Kong, Y., Fei, B., Xin, J. H., “Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps”, ACS Applied Materials and Interfaces, 8(5): 2950-2960, (2016). DOI: https://doi.org/10.1021/acsami.5b08941
  • [16] Caldas, L., Andaloro, A., Calafiore, G., Munechika, K., Cabrini, S. “Water harvesting from fog using building envelopes: Part I”, Water and Environment Journal, 32(4), 493-499, (2018).
  • [17] Kostal, E., Stroj, S., Kasemann, S., Matylitsky, V., Domke, M. “Fabrication of Biomimetic Fog-Collecting Superhydrophilic–Superhydrophobic Surface Micropatterns Using Femtosecond Lasers”, Langmuir, 34(9), 2933-294, (2018). DOI: https://doi.org/10.1021/acs.langmuir.7b0369
  • [18] Zhu, H., Huang, Y., Lou, X., Xia, F. “Beetle-inspired wettable materials: from fabrications to applications”, Materials Today Nano, 6, (2019).
  • [19] Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., Sariola, V. “Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport”, Nanoscale Advances, 1(10): 4025–4040, (2019).
  • [20] Shahrokhian, A., Fengand, J., King, H. “Surface morphology enhances deposition efficiency in biomimetic, wind-driven fog collection”, Journal of Royal Society Interface, 17(166): 1-8, (2020). DOI: https://doi.org/10.1098/rsif.2020.0038
  • [21] Lyu, P., Zhang, X., Peng, M., Shang, B., Liu, X. “Multibioinspired Wettable Patterned Slippery Surface for Efficient Water Harvesting”, Advanced Materials Interfaces, 8(20): 2100691, (2021). DOI: https://doi.org/10.1002/admi.202100691
  • [22] Aslan, D., Selçuk, S. A., Mutlu Avinç, G. “A Biomimetic Approach to Water Harvesting Strategies: An Architectural Point of View”, International Journal of Built Environment and Sustainability, 9(3): 47–60, (2022). DOI: https://doi.org/10.11113/ijbes.v9.n3.969
  • [23] Jalali, S., Aliabadi, M., Mahdavinejad, M. “Learning from plants: A new framework to approach water-harvesting design concepts”, International Journal of Building Pathology and Adaptation, 40(3): 405-421, (2022). DOI: https://doi.org/10.1108/IJBPA-01-2021-0007
  • [24] He, G., Zhang, C., Dong, Z. “Survival in desert: Extreme water adaptations and bioinspired structural designs”, iScience, 26(1): 1-22, (2023). DOI: https://doi.org/10.1016/j.isci.2022.105819
  • [25] Li, Z., Tang, L., Wang, H., Singh, S.C., Wei, X., Yang, Z., Guo, C. “ACS Sustainable Chemistry and Engineering”, 11(30): 11019-11031, (2023). DOI: https://doi.org/10.1021/acssuschemeng.3c00760
  • [26] Helms, M., Vattam, S. S., Goel, A. K. “Biologically Inspired Design: Process and Products, Design Studies”, 30(5): 606-622, (2009). DOI: https://doi.org/10.1016/j.destud.2009.04.003.
  • [27] Arslan Selçuk, S., Gönenç Sorguç, A. “Similarities in structures in nature and man-made structures: Biomimesis in architecture”, Design and Nature II, 180, 45-54, (2004).
  • [28] Al Hussaini, K. “Design in Nature and Architecture”, (Unpublished master’s thesis), Carleton University, Canada, (2005).
  • [29] Gleich, A., Pade, C., Petschow, U., Pissarskoi, E. “Potentials and trends in biomimetics”, Science and Business Media, London: Springer, (2010).
  • [30] Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. and Pahl, A. K. “Biomimetics: its practice and theory”, Journal of the Royal Society Interface, 3, 471–482, (2006). DOI: https://doi.org/10.1098/rsif.2006.0127
  • [31] Shu, L, Ueda, K., Chiu, I. and Cheong, H. “Biologically inspired design”, CIRP Annals- Manufacturing Technology, 60(2): 673–693, (2011). DOI: https://doi.org/10.1016/j.cirp.2011.06.001
  • [32] Goel, A. K., McAdams, D. A., Stone, R. B. “Biologically Inspired Design: Computational Methods and Tools”, Berlin: Springer, (2014). DOI: https://doi.org/10.1007/978-1-4471-5248-4
  • [33] Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A. “Biomimetics Process, tools and practice”, Bioinspiration and Biomimetics, 12(1), 011002, (2017).
  • [34] ISO/TC266, “Biomimetics—Terminology, Concepts and Methodology”, (Berlin: Beuth) ISO 18458: 2015, (2015).
  • [35] Speck, O., Speck, T. “Biomimetics and Education in Europe: Challenges, Opportunities, and Variety”, Biomimetics, 6(3), 49-59, (2021).
  • [36] Benyus, J. “Biomimicry: Innovation Inspired by Nature”, New York: William Morrow Company Inc. (1997).
  • [37] Pawlyn, M. “Biomimicry in Architecture”, UK: RIBA Publishing, (2011).
  • [38] Aziz, M. S., El sheriff, A. Y. “Biomimicry as an approach for bio-inspired structure with the aid of computation”, Alexandria Engineering Journal, (55): 1, 707–714, (2015).
  • [39] Cohen, Y. H., Reich, Y. “Biomimetic design method for innovation and sustainability”, Switzerland: Springer, (2016).
  • [40] Zari, P. M. “Biomimetic Approaches to Architectural Design for Increased Sustainability”, Paper Presented at the Sustainable Building Conference, Wellington, New Zealand, (2007, November).
  • [41] Mutlu Avinç, G., Arslan Selçuk, S. “Mimari tasarımda biyomimetik yaklaşımlar: Pavyonlar üzerine bir araştırma”, Online Journal of Art and Design, 7(2), 92-107, (2019).
  • [42] Vattam, S., Helms, M. E., Goel, A. K. “Biologically-inspired innovation in engineering design: a cognitive study”, Technical Report, Graphics, Visualization and Usability Center, Georgia Institute of Technology, GIT-GVU- 07-07, (2007).
  • [43] Helms, M. E., Vattam, S. S., Goel, A. K., Yen, J., Weissburg, M. “Problem-driven and solution-based design: twin processes of biologically inspired design”, Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Minneapolis, (2008).
  • [44] Gebeshuber, I. C., Drack, M. “An attempt to reveal synergies between biology and mechanical engineering”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7), 1281-1287. (2008).
  • [45] Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., Benyus, J. “Biomimicry resource handbook: A seed bank of best practices”, Missoula, Montana: Biomimicry 3.8, 3, (2013).
  • [46] Gurera, D., Bhushan, B. “Passive water harvesting by desert plants and animals: lessons from nature”, Philosophical Transactions of the Royal Society A, 378(2167), 20190444, (2020).
  • [47] Badarnah, L. “Water management lessons from nature for applications to buildings”, Procedia Engineering, 145, 1432-1439, (2016).
  • [48] Ishii, D., Horiguchi H., Hirai, Y., Yabu H., Matsuo, Y., Ijiro, K., Tsujii, K., Shimozawa, T., Hariyama, T., Shimomura, M. “Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces”, Scientific Reports, 3, 3024, (2013). DOI: https://doi.org/10.1038/srep03024
  • [49] Horiguchi, H., Hironaka, M., Meyer-Rochow, V.B., Hariyama, T. “Water uptake via two pairs of specialized legs in Ligia exotica (Crustacea, Isopoda)”, The Biological Bulletin, 213(2): 196-203, (2007). DOI: https://doi.org/10.2307/25066635
  • [50] Toledo, R.C., Jared, C. “Cutaneous adaptations to water balance in amphibians”, Comparative Biochemistry and Physiology Part A: Physiology, 105(4): 593–608, (1993). DOI: https://doi.org/10.1016/0300-9629(93)90259-7
  • [51] Tracy, C.R., Laurence, N., Christian, K.A. “Condensation onto the skin as a means for water gain by tree frogs in tropical Australia”, American Naturalist, 178, 553–558, (2011). DOI: https://doi.org/10.1086/661908
  • [52] Martins, A., Bennett, N., Clavel, S., Groenewald, H., Hensman, S., Hoby, S., Joris, A., Manger, P., Milinkovitch, M. “Locally-curved geometry generates bending cracks in the African elephant skin”, Nature Communications, 9, 1-8, (2018). DOI: https://doi.org/10.1038/s41467-018-06257-3
  • [53] Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L. “A multi-structural and multi-functional integrated fog collection system in cactus”, Nature Communications, 3, 1247, (2012). DOI: https://doi.org/10.1038/ncomms 2253
  • [54] Malik, F., Clement, R., Gethin, D., Beysens, D., Cohen, R., Krawszik, W. and Parker, A. “Dew harvesting efficiency of four species of cacti, Bioinspiration and Biomimetics”, 10(3): 036005, (2015). DOI: https://doi.org/10.1088/1748-3190/10/3/036005
  • [55] Pierce, S., Maxwell, K., Griffiths, H., Winter, K. “Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae”, American Journal of Botany, 88(8): 1371-1389, (2001). DOI: https://doi.org/10.2307/3558444
  • [56] Andrews, H.G., Eccles, E.A., Schofield, W.C.E., Badyal, J.P.S. “Three-dimensional hierarchical structures for fog harvesting”, Langmuir, 27, 3798–3802, (2011). DOI: https://doi.org/10.1021/la2000014
  • [57] https://jacobrusso.net/bgdc_accelerator-phase Access date: 09.01.2024.
  • [58] https://2021.prizes.new-european-bauhaus.eu/node/267486 Access date: 01.01.2024.
  • [59] https://static1.squarespace.com/static/5386a690e4b017042145f34e/t/5840ecd0197aeaf4985a82f8/1480649951000/Fog+Catcher+Energy.pdf Access date: 27.01.2024.
  • [60] https://www.dp6.nl/en/projecten/de-watercampus Access date: 15.01.2024.
  • [61] https://portfolio.cept.ac.in/fd/computational-design-biomimetics-id4016-monsoon-2021/snow-retention-facade-system-monsoon-2021-pid20124 Access date: 10.01.2024.
  • [62] Hales, T. C. “The Honeycomb Conjecture, Discrete and Computational Geometry”, 1-22, (2001). DOI: https://doi.org/10.1007/s004540010071
Year 2024, Volume: 37 Issue: 4, 1575 - 1594
https://doi.org/10.35378/gujs.1471707

Abstract

References

  • [1] Brown, P.S., Bhushan, B. “Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil”, Philosophical Transactions of the Royal Society A, 374, 20160135, (2016). DOI: https://doi.org/10.1098/rsta.2016.0135
  • [2] World Economic Forum, “Global Risks 2015, 10th Edition, Geneva”, Switzerland, Adress: https://www3.weforum.org/docs/WEF_Global_Risks_2015_Report15.pdf (2015).
  • [3] World Water, Water Scarcity Clock. Adress: https://worldwater.io/ (2024). Access date: 09.01.2024.
  • [4] https://www.sdg6data.org/en/indicator/6.1.1 Access date: 10.01.2024.
  • [5] Bhushan B. “Bioinspired water collection methods to supplement water supply”, Philosophical Transactions of the Royal Society A, 377, (2019). DOI: https://doi.org/10.1098/rsta.2019.0119
  • [6] Comanns, P. “Passive water collection with the integument: mechanisms and their biomimetic potential”, Journal of Experimental Biology, 221, (2018). DOI: https://doi.org/10.1242/jeb.153130
  • [7] Jiang, L., Guo, C., Fu, M., Gong, X., Ramakrishna, S., “Water harvesting on biomimetic material inspired by bettles”, Heliyon, 9(1): e12355, (2023). DOI: https://doi.org/10.1016/j.heliyon.2022.e12355
  • [8] Hou, Y., Chen, Y., Xue, Y., Zheng, Y., Jiang, L. “Water collection behavior and hanging ability of bioinspired fiber”, Langmuir, 13, 28(10): 4737-4743, (2012). DOI: https://doi.org/10.1021/la204682j
  • [9] Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., Fessehaye, G.M. “Fog as a fresh-water resource: overview and perspectives”, Ambio, 41(3): 221-34, (2012). DOI: https://doi.org/10.1007/s13280-012-0247-8
  • [10] Domen, J. K., Stringfellow, W. T., Camarillo, M. K., Gulati, S. “Fog water as an alternative and sustainable water resource”, Clean Technologies and Environmental Policy, 16(2): 235–249, (2014). DOI: https://doi.org/10.1007/s10098-013-0645-z
  • [11] Cao, M., Ju, J., Li, K., Dou, S., Liu, K., Jiang, L. “Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector”, Advanced Functional Materials, 24, 3235–3240, (2014). DOI: https://doi.org/10.1002/adfm.201303661
  • [12] Azad, M., Ellerbrok, D., Barthlott, W., Koch, K. “Fog collecting biomimetic surfaces: influence of microstructure and wettability”, Bioinspiration and Biomimetics, 10(1): 016004, (2015). DOI: https://doi.org/10.1088/1748-3190/10/1/016004
  • [13] Badarnah, L., Kadri, U. “A methodology for the generation of biomimetic design concepts, Architectural Science Review, 58(2), 120-133, (2015).
  • [14] Zhu, H., Guo, Z., Liu, W. “Biomimetic Water-Collecting Materials Inspired by Nature”, Chemical Communications, 52, (2016). DOI: https://doi.org/10.1039/C5CC09867J
  • [15] Wang, Y., Wang, X., Lai, C., Hu, H., Kong, Y., Fei, B., Xin, J. H., “Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps”, ACS Applied Materials and Interfaces, 8(5): 2950-2960, (2016). DOI: https://doi.org/10.1021/acsami.5b08941
  • [16] Caldas, L., Andaloro, A., Calafiore, G., Munechika, K., Cabrini, S. “Water harvesting from fog using building envelopes: Part I”, Water and Environment Journal, 32(4), 493-499, (2018).
  • [17] Kostal, E., Stroj, S., Kasemann, S., Matylitsky, V., Domke, M. “Fabrication of Biomimetic Fog-Collecting Superhydrophilic–Superhydrophobic Surface Micropatterns Using Femtosecond Lasers”, Langmuir, 34(9), 2933-294, (2018). DOI: https://doi.org/10.1021/acs.langmuir.7b0369
  • [18] Zhu, H., Huang, Y., Lou, X., Xia, F. “Beetle-inspired wettable materials: from fabrications to applications”, Materials Today Nano, 6, (2019).
  • [19] Sharma, V., Yiannacou, K., Karjalainen, M., Lahtonen, K., Valden, M., Sariola, V. “Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport”, Nanoscale Advances, 1(10): 4025–4040, (2019).
  • [20] Shahrokhian, A., Fengand, J., King, H. “Surface morphology enhances deposition efficiency in biomimetic, wind-driven fog collection”, Journal of Royal Society Interface, 17(166): 1-8, (2020). DOI: https://doi.org/10.1098/rsif.2020.0038
  • [21] Lyu, P., Zhang, X., Peng, M., Shang, B., Liu, X. “Multibioinspired Wettable Patterned Slippery Surface for Efficient Water Harvesting”, Advanced Materials Interfaces, 8(20): 2100691, (2021). DOI: https://doi.org/10.1002/admi.202100691
  • [22] Aslan, D., Selçuk, S. A., Mutlu Avinç, G. “A Biomimetic Approach to Water Harvesting Strategies: An Architectural Point of View”, International Journal of Built Environment and Sustainability, 9(3): 47–60, (2022). DOI: https://doi.org/10.11113/ijbes.v9.n3.969
  • [23] Jalali, S., Aliabadi, M., Mahdavinejad, M. “Learning from plants: A new framework to approach water-harvesting design concepts”, International Journal of Building Pathology and Adaptation, 40(3): 405-421, (2022). DOI: https://doi.org/10.1108/IJBPA-01-2021-0007
  • [24] He, G., Zhang, C., Dong, Z. “Survival in desert: Extreme water adaptations and bioinspired structural designs”, iScience, 26(1): 1-22, (2023). DOI: https://doi.org/10.1016/j.isci.2022.105819
  • [25] Li, Z., Tang, L., Wang, H., Singh, S.C., Wei, X., Yang, Z., Guo, C. “ACS Sustainable Chemistry and Engineering”, 11(30): 11019-11031, (2023). DOI: https://doi.org/10.1021/acssuschemeng.3c00760
  • [26] Helms, M., Vattam, S. S., Goel, A. K. “Biologically Inspired Design: Process and Products, Design Studies”, 30(5): 606-622, (2009). DOI: https://doi.org/10.1016/j.destud.2009.04.003.
  • [27] Arslan Selçuk, S., Gönenç Sorguç, A. “Similarities in structures in nature and man-made structures: Biomimesis in architecture”, Design and Nature II, 180, 45-54, (2004).
  • [28] Al Hussaini, K. “Design in Nature and Architecture”, (Unpublished master’s thesis), Carleton University, Canada, (2005).
  • [29] Gleich, A., Pade, C., Petschow, U., Pissarskoi, E. “Potentials and trends in biomimetics”, Science and Business Media, London: Springer, (2010).
  • [30] Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. and Pahl, A. K. “Biomimetics: its practice and theory”, Journal of the Royal Society Interface, 3, 471–482, (2006). DOI: https://doi.org/10.1098/rsif.2006.0127
  • [31] Shu, L, Ueda, K., Chiu, I. and Cheong, H. “Biologically inspired design”, CIRP Annals- Manufacturing Technology, 60(2): 673–693, (2011). DOI: https://doi.org/10.1016/j.cirp.2011.06.001
  • [32] Goel, A. K., McAdams, D. A., Stone, R. B. “Biologically Inspired Design: Computational Methods and Tools”, Berlin: Springer, (2014). DOI: https://doi.org/10.1007/978-1-4471-5248-4
  • [33] Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A. “Biomimetics Process, tools and practice”, Bioinspiration and Biomimetics, 12(1), 011002, (2017).
  • [34] ISO/TC266, “Biomimetics—Terminology, Concepts and Methodology”, (Berlin: Beuth) ISO 18458: 2015, (2015).
  • [35] Speck, O., Speck, T. “Biomimetics and Education in Europe: Challenges, Opportunities, and Variety”, Biomimetics, 6(3), 49-59, (2021).
  • [36] Benyus, J. “Biomimicry: Innovation Inspired by Nature”, New York: William Morrow Company Inc. (1997).
  • [37] Pawlyn, M. “Biomimicry in Architecture”, UK: RIBA Publishing, (2011).
  • [38] Aziz, M. S., El sheriff, A. Y. “Biomimicry as an approach for bio-inspired structure with the aid of computation”, Alexandria Engineering Journal, (55): 1, 707–714, (2015).
  • [39] Cohen, Y. H., Reich, Y. “Biomimetic design method for innovation and sustainability”, Switzerland: Springer, (2016).
  • [40] Zari, P. M. “Biomimetic Approaches to Architectural Design for Increased Sustainability”, Paper Presented at the Sustainable Building Conference, Wellington, New Zealand, (2007, November).
  • [41] Mutlu Avinç, G., Arslan Selçuk, S. “Mimari tasarımda biyomimetik yaklaşımlar: Pavyonlar üzerine bir araştırma”, Online Journal of Art and Design, 7(2), 92-107, (2019).
  • [42] Vattam, S., Helms, M. E., Goel, A. K. “Biologically-inspired innovation in engineering design: a cognitive study”, Technical Report, Graphics, Visualization and Usability Center, Georgia Institute of Technology, GIT-GVU- 07-07, (2007).
  • [43] Helms, M. E., Vattam, S. S., Goel, A. K., Yen, J., Weissburg, M. “Problem-driven and solution-based design: twin processes of biologically inspired design”, Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Minneapolis, (2008).
  • [44] Gebeshuber, I. C., Drack, M. “An attempt to reveal synergies between biology and mechanical engineering”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7), 1281-1287. (2008).
  • [45] Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., Benyus, J. “Biomimicry resource handbook: A seed bank of best practices”, Missoula, Montana: Biomimicry 3.8, 3, (2013).
  • [46] Gurera, D., Bhushan, B. “Passive water harvesting by desert plants and animals: lessons from nature”, Philosophical Transactions of the Royal Society A, 378(2167), 20190444, (2020).
  • [47] Badarnah, L. “Water management lessons from nature for applications to buildings”, Procedia Engineering, 145, 1432-1439, (2016).
  • [48] Ishii, D., Horiguchi H., Hirai, Y., Yabu H., Matsuo, Y., Ijiro, K., Tsujii, K., Shimozawa, T., Hariyama, T., Shimomura, M. “Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces”, Scientific Reports, 3, 3024, (2013). DOI: https://doi.org/10.1038/srep03024
  • [49] Horiguchi, H., Hironaka, M., Meyer-Rochow, V.B., Hariyama, T. “Water uptake via two pairs of specialized legs in Ligia exotica (Crustacea, Isopoda)”, The Biological Bulletin, 213(2): 196-203, (2007). DOI: https://doi.org/10.2307/25066635
  • [50] Toledo, R.C., Jared, C. “Cutaneous adaptations to water balance in amphibians”, Comparative Biochemistry and Physiology Part A: Physiology, 105(4): 593–608, (1993). DOI: https://doi.org/10.1016/0300-9629(93)90259-7
  • [51] Tracy, C.R., Laurence, N., Christian, K.A. “Condensation onto the skin as a means for water gain by tree frogs in tropical Australia”, American Naturalist, 178, 553–558, (2011). DOI: https://doi.org/10.1086/661908
  • [52] Martins, A., Bennett, N., Clavel, S., Groenewald, H., Hensman, S., Hoby, S., Joris, A., Manger, P., Milinkovitch, M. “Locally-curved geometry generates bending cracks in the African elephant skin”, Nature Communications, 9, 1-8, (2018). DOI: https://doi.org/10.1038/s41467-018-06257-3
  • [53] Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L. “A multi-structural and multi-functional integrated fog collection system in cactus”, Nature Communications, 3, 1247, (2012). DOI: https://doi.org/10.1038/ncomms 2253
  • [54] Malik, F., Clement, R., Gethin, D., Beysens, D., Cohen, R., Krawszik, W. and Parker, A. “Dew harvesting efficiency of four species of cacti, Bioinspiration and Biomimetics”, 10(3): 036005, (2015). DOI: https://doi.org/10.1088/1748-3190/10/3/036005
  • [55] Pierce, S., Maxwell, K., Griffiths, H., Winter, K. “Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae”, American Journal of Botany, 88(8): 1371-1389, (2001). DOI: https://doi.org/10.2307/3558444
  • [56] Andrews, H.G., Eccles, E.A., Schofield, W.C.E., Badyal, J.P.S. “Three-dimensional hierarchical structures for fog harvesting”, Langmuir, 27, 3798–3802, (2011). DOI: https://doi.org/10.1021/la2000014
  • [57] https://jacobrusso.net/bgdc_accelerator-phase Access date: 09.01.2024.
  • [58] https://2021.prizes.new-european-bauhaus.eu/node/267486 Access date: 01.01.2024.
  • [59] https://static1.squarespace.com/static/5386a690e4b017042145f34e/t/5840ecd0197aeaf4985a82f8/1480649951000/Fog+Catcher+Energy.pdf Access date: 27.01.2024.
  • [60] https://www.dp6.nl/en/projecten/de-watercampus Access date: 15.01.2024.
  • [61] https://portfolio.cept.ac.in/fd/computational-design-biomimetics-id4016-monsoon-2021/snow-retention-facade-system-monsoon-2021-pid20124 Access date: 10.01.2024.
  • [62] Hales, T. C. “The Honeycomb Conjecture, Discrete and Computational Geometry”, 1-22, (2001). DOI: https://doi.org/10.1007/s004540010071
There are 62 citations in total.

Details

Primary Language English
Subjects Sustainable Architecture
Journal Section Architecture & City and Urban Planning
Authors

Zeynep Kamile Cenk 0000-0001-5148-2714

Güneş Mutlu Avinç 0000-0003-1049-2689

Semra Arslan Selçuk 0000-0002-2128-2858

Early Pub Date July 25, 2024
Publication Date
Submission Date April 21, 2024
Acceptance Date June 25, 2024
Published in Issue Year 2024 Volume: 37 Issue: 4

Cite

APA Cenk, Z. K., Mutlu Avinç, G., & Arslan Selçuk, S. (n.d.). Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting. Gazi University Journal of Science, 37(4), 1575-1594. https://doi.org/10.35378/gujs.1471707
AMA Cenk ZK, Mutlu Avinç G, Arslan Selçuk S. Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting. Gazi University Journal of Science. 37(4):1575-1594. doi:10.35378/gujs.1471707
Chicago Cenk, Zeynep Kamile, Güneş Mutlu Avinç, and Semra Arslan Selçuk. “Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting”. Gazi University Journal of Science 37, no. 4 n.d.: 1575-94. https://doi.org/10.35378/gujs.1471707.
EndNote Cenk ZK, Mutlu Avinç G, Arslan Selçuk S Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting. Gazi University Journal of Science 37 4 1575–1594.
IEEE Z. K. Cenk, G. Mutlu Avinç, and S. Arslan Selçuk, “Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1575–1594, doi: 10.35378/gujs.1471707.
ISNAD Cenk, Zeynep Kamile et al. “Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting”. Gazi University Journal of Science 37/4 (n.d.), 1575-1594. https://doi.org/10.35378/gujs.1471707.
JAMA Cenk ZK, Mutlu Avinç G, Arslan Selçuk S. Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting. Gazi University Journal of Science.;37:1575–1594.
MLA Cenk, Zeynep Kamile et al. “Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting”. Gazi University Journal of Science, vol. 37, no. 4, pp. 1575-94, doi:10.35378/gujs.1471707.
Vancouver Cenk ZK, Mutlu Avinç G, Arslan Selçuk S. Application of Biomimetic Strategies In Building Envelope Design for Water Harvesting. Gazi University Journal of Science. 37(4):1575-94.