Research Article
BibTex RIS Cite

Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics

Year 2025, Volume: 38 Issue: 2, 780 - 790, 01.06.2025
https://doi.org/10.35378/gujs.1505025

Abstract

In this paper a metamaterial loaded UWB MIMO operating in C and X band is presented. The proposed design uses hexagonal fractal structure with partial ground plane to achieve UWB characteristics. The design is utilized for four element MIMO to offer better diversity performance with relevant compactness. The isolation between orthogonally placed MIMO elements is achieved below -15dB in entire resonance band from 6 GHz to 12 GHz with inter-element separation of 0.33λg giving the overall dimension of 93mm x 93mm x 1.6mm. The isolation is further enhanced by using a single negative (SNG) metamaterial with MIMO. The obtained results were verified by fabricating the proposed design in low-cost FR-4 showing the resonance from 6-12 GHz with good impedance matching and isolation below -30 dB in entire resonating band. The uniqueness of the proposed design is much less volume despite the metamaterial superstrate placed 1.5 mm above the MIMO. The 2D radiation pattern for E field and H field co and cross polarization shows more co-polarization and less cross polarization with almost omnidirectional radiation pattern.

Ethical Statement

The author’s does not have any financial or non-financial conflict of interest in the work submitted and discussed in this paper.

Project Number

Not Applicable

References

  • [1] Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [Wireless Corner]", IEEE Antennas and Propagation Magazine, 55(5), 218–232, (2013). DOI: 10.1109/MAP.2013.6685359.
  • [2] Mark, R., Mishra, N., Mandal, K., et al., "Hexagonal ring fractal antenna with dumbbell shaped defected ground structure for multiband wireless applications," AEU - International Journal of Electronics and Communications, vol. 94, 42–50, (2018). DOI: 10.1016/j.aeue.2018.06.015.
  • [3] Arora, C., Pattnaik, S. S., and Baral, R. N., "Dual band microstrip patch antenna array loaded with split ring resonators and via holes", AEU - International Journal of Electronics and Communications, 93, 253–260, (2018). DOI: 10.1016/j.aeue.2018.07.013.
  • [4] Gupta, S. K., Sharma, A., and Das, S., "Gain and isolation enhancement of MIMO antenna for WLAN applications", IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 692-697, (2022). DOI: 10.1109/MAPCON53227.2022.9741421.
  • [5] Abdelhamid, C., Sakli, H., and Sakli, N., "A four-element UWB MIMO antenna using SRRs for application in satellite communications", International Journal of Electrical and Computer Engineering, 11 (4), 3154–3167, (2021). DOI: 10.11591/ijece.v11i4.
  • [6] Wu, W., Yuan, B., and Wu, A., "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling reduction based on EBG structures", International Journal of Antennas and Propagation, 2018, ID 8490740, (2018). DOI: 10.1155/2018/8490740.
  • [7] Malaisamy, K., Santhi, M., and Robinson, S., "Design and analysis of 4 × 4 MIMO antenna with DGS for WLAN applications", International Journal of Microwave and Wireless Technologies, 13 (9), 979–985, (2021). DOI: 10.1017/S1759078721000495.
  • [8] Bhanumathi, V., and Sivaranjani, G., "High isolation MIMO antenna using semi-circle patch for UWB applications", Progress In Electromagnetics Research C, 92, 31-40, (2019). DOI: 10.2528/PIERC19051304.
  • [9] Pannu, P., and Sharma, K. D., "Miniaturize four-port UWB-MIMO antenna with tri-notched band characteristics," Microwave and Optical Technology Letters, 63 (5), 1489–1498, (2021). DOI: 10.1002/mop.32766.
  • [10] Gao, D., Cao, Z., Quan, X., et al., "A complementary split-ring array for compact decoupling 2 × 2 circularly polarized antenna", Microwave and Optical Technology Letters, 63(4), 1294–1303, (2021). DOI: 10.1002/mop.32828.
  • [11] Wang, F., Duan, Z., Li, S., et al., "Compact UWB MIMO Antenna with Metamaterial-inspired Isolator", Progress In Electromagnetics Research C, 84, 61-74, (2018). DOI: 10.2528/PIERC18041602.
  • [12] Zhu, X., Yang, X., Song, Q., et al., "Compact UWB-MIMO antenna with metamaterial FSS decoupling structure", EURASIP Journal on Wireless Communications and Networking, 1, (2017). DOI: 10.1186/s13638-016-0783-2.
  • [13] Aggarwal, I., Pandey, S., Tripathy, R. M., et al., "A super wideband MIMO antenna with metamaterial superstrate for gain enhancement at WLAN frequency band", International Journal of Systems Assurance Engineering and Management, 14(2), 643–658, (2023). DOI: 10.1007/s13198-022-01675-5.
  • [14] Faruque, I. R. M., Siddiky, M. A., Ahamed, E., et al., "Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth", Scientific Reports, 11 (1), (2021). DOI: 10.1038/s41598-021-97066-3.
  • [15] Rajak, N., Chattoraj, N., and Mark, R., "Metamaterial cell inspired high gain multiband antenna for wireless applications", AEU - International Journal of Electronics and Communications, 109, 23–30, (2019). DOI: 10.1016/j.aeue.2019.07.001.
  • [16] Gao, X., Zhang, Y., and Li, S., "High refractive index metamaterial superstrate for microstrip patch antenna performance improvement", Frontiers in Physics, 8, (2020). DOI: 10.3389/fphy.2020.557070.
  • [17] Asadpor, L., Sharifi, G., and Rezvani, M., "Design of a high-gain wideband antenna using double-layer metasurface", Microwave and Optical Technology Letters, 61(4), 1004–1010, (2019). DOI: 10.1002/mop.31767.
  • [18] Jabire, H. A., et al., "Metamaterial based design of compact UWB/MIMO monopole antenna with characteristic mode analysis", Applied Sciences, 11 (4), 1–21, (2021). DOI: 10.3390/app11042121.
  • [19] Hasan, M. M., Islam, M. T., Rahim, S. K. A., et al., "A compact mu-near-zero metamaterial integrated wideband high-gain MIMO antenna for 5G new radio applications", Materials, 16 (4), 1751, (2023). DOI: 10.3390/ma16041751.
  • [20] Sufian, A. M., Hussain, N., Askari, H., et al., "Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins", IEEE Access, 9, 73533-73543, (2021). DOI: 10.1109/ACCESS.2021.3077243.
  • [21] Ameen, M., Ahmad, O., and Chaudhary, R. K., "Wideband circularly-polarised high-gain diversity antenna loaded with metasurface reflector for small satellite applications", Electronics Letters, 55, 829-831, (2019). DOI: 10.1049/el.2019.1645.
  • [22] Alibakhshikenari, M., Khalily, M., Virdee, S. B., et al., "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading", IEEE Access, 7, 23606-23614, (2019). DOI: 10.1109/ACCESS.2019.2891861.
  • [23] Mark, R., Rajak, N., Mandal, K., and Das, S., "Isolation and gain enhancement using metamaterial-based superstrate for MIMO applications", Radioengineering, 28, 689-695, (2019). DOI: 10.13164/re.2019.0689.
  • [24] Gupta, S. K., Mark, R., Mandal, K., and Das, S., "Four element UWB MIMO antenna with improved isolation using resistance loaded stub for S, C and X band applications", Progress In Electromagnetics Research C, 131, 73-87, (2023).
  • [25] Salehi, M., Oraizi, H., “Wideband high gain metasurface-based 4T4R MIMO antenna with highly isolated ports for sub-6 GHz 5G applications”, scientific reports, 14, 14448, (2024). DOI: 10.1038/s41598-024-65135-9.
  • [26] Sufian A. M., Hussain N., Askari H., Park G. S., Shin S. K. and Kim N., "Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins", IEEE Access, 9, 73533-73543, (2021). DOI: 10.1109/ACCESS.2021.3079965.
  • [27] Rahman Md. A, Al-Bawri S. S., Abdulkaw M. W., Aljaloud K., Islam T. M., “A unique SWB multi-slotted four-port highly isolated MIMO antenna loaded with metasurface for IOT applications-based machine learning verification”, Engineering Science and Technology, an International Journal, 50, 101616, ISSN 2215-0986, (2024). DOI: 10.1016/j.jestch.2024.101616.
  • [28] Smith, D., Vier, D., Koschny, T., and Soukoulis, C. M., "Electromagnetic parameter retrieval from inhomogeneous metamaterials", Physical Review E, 71 (3), 036617, (2005). DOI: 10.1103/PhysRevE.71.036617.
Year 2025, Volume: 38 Issue: 2, 780 - 790, 01.06.2025
https://doi.org/10.35378/gujs.1505025

Abstract

Project Number

Not Applicable

References

  • [1] Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [Wireless Corner]", IEEE Antennas and Propagation Magazine, 55(5), 218–232, (2013). DOI: 10.1109/MAP.2013.6685359.
  • [2] Mark, R., Mishra, N., Mandal, K., et al., "Hexagonal ring fractal antenna with dumbbell shaped defected ground structure for multiband wireless applications," AEU - International Journal of Electronics and Communications, vol. 94, 42–50, (2018). DOI: 10.1016/j.aeue.2018.06.015.
  • [3] Arora, C., Pattnaik, S. S., and Baral, R. N., "Dual band microstrip patch antenna array loaded with split ring resonators and via holes", AEU - International Journal of Electronics and Communications, 93, 253–260, (2018). DOI: 10.1016/j.aeue.2018.07.013.
  • [4] Gupta, S. K., Sharma, A., and Das, S., "Gain and isolation enhancement of MIMO antenna for WLAN applications", IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 692-697, (2022). DOI: 10.1109/MAPCON53227.2022.9741421.
  • [5] Abdelhamid, C., Sakli, H., and Sakli, N., "A four-element UWB MIMO antenna using SRRs for application in satellite communications", International Journal of Electrical and Computer Engineering, 11 (4), 3154–3167, (2021). DOI: 10.11591/ijece.v11i4.
  • [6] Wu, W., Yuan, B., and Wu, A., "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling reduction based on EBG structures", International Journal of Antennas and Propagation, 2018, ID 8490740, (2018). DOI: 10.1155/2018/8490740.
  • [7] Malaisamy, K., Santhi, M., and Robinson, S., "Design and analysis of 4 × 4 MIMO antenna with DGS for WLAN applications", International Journal of Microwave and Wireless Technologies, 13 (9), 979–985, (2021). DOI: 10.1017/S1759078721000495.
  • [8] Bhanumathi, V., and Sivaranjani, G., "High isolation MIMO antenna using semi-circle patch for UWB applications", Progress In Electromagnetics Research C, 92, 31-40, (2019). DOI: 10.2528/PIERC19051304.
  • [9] Pannu, P., and Sharma, K. D., "Miniaturize four-port UWB-MIMO antenna with tri-notched band characteristics," Microwave and Optical Technology Letters, 63 (5), 1489–1498, (2021). DOI: 10.1002/mop.32766.
  • [10] Gao, D., Cao, Z., Quan, X., et al., "A complementary split-ring array for compact decoupling 2 × 2 circularly polarized antenna", Microwave and Optical Technology Letters, 63(4), 1294–1303, (2021). DOI: 10.1002/mop.32828.
  • [11] Wang, F., Duan, Z., Li, S., et al., "Compact UWB MIMO Antenna with Metamaterial-inspired Isolator", Progress In Electromagnetics Research C, 84, 61-74, (2018). DOI: 10.2528/PIERC18041602.
  • [12] Zhu, X., Yang, X., Song, Q., et al., "Compact UWB-MIMO antenna with metamaterial FSS decoupling structure", EURASIP Journal on Wireless Communications and Networking, 1, (2017). DOI: 10.1186/s13638-016-0783-2.
  • [13] Aggarwal, I., Pandey, S., Tripathy, R. M., et al., "A super wideband MIMO antenna with metamaterial superstrate for gain enhancement at WLAN frequency band", International Journal of Systems Assurance Engineering and Management, 14(2), 643–658, (2023). DOI: 10.1007/s13198-022-01675-5.
  • [14] Faruque, I. R. M., Siddiky, M. A., Ahamed, E., et al., "Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth", Scientific Reports, 11 (1), (2021). DOI: 10.1038/s41598-021-97066-3.
  • [15] Rajak, N., Chattoraj, N., and Mark, R., "Metamaterial cell inspired high gain multiband antenna for wireless applications", AEU - International Journal of Electronics and Communications, 109, 23–30, (2019). DOI: 10.1016/j.aeue.2019.07.001.
  • [16] Gao, X., Zhang, Y., and Li, S., "High refractive index metamaterial superstrate for microstrip patch antenna performance improvement", Frontiers in Physics, 8, (2020). DOI: 10.3389/fphy.2020.557070.
  • [17] Asadpor, L., Sharifi, G., and Rezvani, M., "Design of a high-gain wideband antenna using double-layer metasurface", Microwave and Optical Technology Letters, 61(4), 1004–1010, (2019). DOI: 10.1002/mop.31767.
  • [18] Jabire, H. A., et al., "Metamaterial based design of compact UWB/MIMO monopole antenna with characteristic mode analysis", Applied Sciences, 11 (4), 1–21, (2021). DOI: 10.3390/app11042121.
  • [19] Hasan, M. M., Islam, M. T., Rahim, S. K. A., et al., "A compact mu-near-zero metamaterial integrated wideband high-gain MIMO antenna for 5G new radio applications", Materials, 16 (4), 1751, (2023). DOI: 10.3390/ma16041751.
  • [20] Sufian, A. M., Hussain, N., Askari, H., et al., "Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins", IEEE Access, 9, 73533-73543, (2021). DOI: 10.1109/ACCESS.2021.3077243.
  • [21] Ameen, M., Ahmad, O., and Chaudhary, R. K., "Wideband circularly-polarised high-gain diversity antenna loaded with metasurface reflector for small satellite applications", Electronics Letters, 55, 829-831, (2019). DOI: 10.1049/el.2019.1645.
  • [22] Alibakhshikenari, M., Khalily, M., Virdee, S. B., et al., "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading", IEEE Access, 7, 23606-23614, (2019). DOI: 10.1109/ACCESS.2019.2891861.
  • [23] Mark, R., Rajak, N., Mandal, K., and Das, S., "Isolation and gain enhancement using metamaterial-based superstrate for MIMO applications", Radioengineering, 28, 689-695, (2019). DOI: 10.13164/re.2019.0689.
  • [24] Gupta, S. K., Mark, R., Mandal, K., and Das, S., "Four element UWB MIMO antenna with improved isolation using resistance loaded stub for S, C and X band applications", Progress In Electromagnetics Research C, 131, 73-87, (2023).
  • [25] Salehi, M., Oraizi, H., “Wideband high gain metasurface-based 4T4R MIMO antenna with highly isolated ports for sub-6 GHz 5G applications”, scientific reports, 14, 14448, (2024). DOI: 10.1038/s41598-024-65135-9.
  • [26] Sufian A. M., Hussain N., Askari H., Park G. S., Shin S. K. and Kim N., "Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins", IEEE Access, 9, 73533-73543, (2021). DOI: 10.1109/ACCESS.2021.3079965.
  • [27] Rahman Md. A, Al-Bawri S. S., Abdulkaw M. W., Aljaloud K., Islam T. M., “A unique SWB multi-slotted four-port highly isolated MIMO antenna loaded with metasurface for IOT applications-based machine learning verification”, Engineering Science and Technology, an International Journal, 50, 101616, ISSN 2215-0986, (2024). DOI: 10.1016/j.jestch.2024.101616.
  • [28] Smith, D., Vier, D., Koschny, T., and Soukoulis, C. M., "Electromagnetic parameter retrieval from inhomogeneous metamaterials", Physical Review E, 71 (3), 036617, (2005). DOI: 10.1103/PhysRevE.71.036617.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Electrical & Electronics Engineering
Authors

Sumit Kumar Gupta 0000-0003-3828-3926

Aditi Sharma 0000-0001-5927-8048

Soma Das 0000-0002-5369-0645

Project Number Not Applicable
Early Pub Date April 28, 2025
Publication Date June 1, 2025
Submission Date June 26, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2025 Volume: 38 Issue: 2

Cite

APA Gupta, S. K., Sharma, A., & Das, S. (2025). Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics. Gazi University Journal of Science, 38(2), 780-790. https://doi.org/10.35378/gujs.1505025
AMA Gupta SK, Sharma A, Das S. Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics. Gazi University Journal of Science. June 2025;38(2):780-790. doi:10.35378/gujs.1505025
Chicago Gupta, Sumit Kumar, Aditi Sharma, and Soma Das. “Quad Element Metamaterial Based Antenna for C and X Band Application With Improved Diversity Characteristics”. Gazi University Journal of Science 38, no. 2 (June 2025): 780-90. https://doi.org/10.35378/gujs.1505025.
EndNote Gupta SK, Sharma A, Das S (June 1, 2025) Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics. Gazi University Journal of Science 38 2 780–790.
IEEE S. K. Gupta, A. Sharma, and S. Das, “Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics”, Gazi University Journal of Science, vol. 38, no. 2, pp. 780–790, 2025, doi: 10.35378/gujs.1505025.
ISNAD Gupta, Sumit Kumar et al. “Quad Element Metamaterial Based Antenna for C and X Band Application With Improved Diversity Characteristics”. Gazi University Journal of Science 38/2 (June 2025), 780-790. https://doi.org/10.35378/gujs.1505025.
JAMA Gupta SK, Sharma A, Das S. Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics. Gazi University Journal of Science. 2025;38:780–790.
MLA Gupta, Sumit Kumar et al. “Quad Element Metamaterial Based Antenna for C and X Band Application With Improved Diversity Characteristics”. Gazi University Journal of Science, vol. 38, no. 2, 2025, pp. 780-9, doi:10.35378/gujs.1505025.
Vancouver Gupta SK, Sharma A, Das S. Quad Element Metamaterial based Antenna for C and X band Application with Improved Diversity Characteristics. Gazi University Journal of Science. 2025;38(2):780-9.