Research Article
BibTex RIS Cite
Year 2025, Volume: 38 Issue: 3, 1431 - 1447
https://doi.org/10.35378/gujs.1508000

Abstract

References

  • [1] Luthfi, W., Pinem, S., “Validation of SRAC Code System for Neutronic Calculation of the PWR MOX/UO2 Core Benchmark”, Urania - Jurnal Ilmu Daur Bahan Bakar Nuklir, 27(1): 47–56, (2021).
  • [2] Pinem, S., Sembiring, T. M., Surbakti, T., “Neutronic parameters analysis of a PWR fuel element using silicon carbide claddings with SRAC2006/NODAL3 codes”, AIP Conference Proceedings, 2180. (2019).
  • [3] Luthfi, W., Pinem, S., “Calculation of 2-Dimensional PWR MOX/UO2 Core Benchmark OECD NEA 6048 With SRAC Code”, Jurnal Teknolgi Reaktor Nuklir Tri Dasa Mega, 22(3): 89, (2020). DOI: 10.17146/tdm.2020.22.3.5955.
  • [4] Sembiring, T. M., Susilo, J., Pinem, S., “Evaluation of the AP1000 delayed neutron parameters using MCNP6”, Journal of Physics: Conference Series, 962: 012030, (2018).
  • [5] Louis, H. K., “Neutronic Analysis of the VVER-1200 under Normal Operating Conditions”, Journal Nuclear Particle Physic, 11(3): 53–66, (2021). DOI: 10.5923/j.jnpp.20211103.01.
  • [6] Zhao, P., Liu, Z., Yu, T., Xie, J., Chen, Z., Shen, C., “Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor”, Journal Nuclear Engineering Technology, 52(12): 2789–2802, (2020). DOI: 10.1016/j.net.2020.05.023.
  • [7] Safavi, A., Esteki, M. H., Mirvakili, S. M., Arani, M. K., “Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors”, Journal Nuclear Enggineering Technology, 52(8): 1603–1610, (2020). DOI: 10.1016/j.net.2020.01.024.
  • [8] Pinem, S., Sembiring, T. M., Liem, P. H., “NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR)”, Journal of Science Technology Nuclear Installation, 2016: 1–11, (2016). DOI: 10.1155/2016/7538681.
  • [9] Sembiring, T. M., Pinem, S., Liem, P. H., "Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code", Journal Science Technology Nuclear Installation, 2017: 1-8, (2017). DOI: 10.1155/2017/5151890.
  • [10] Sembiring, T. M., Pinem, S., "The validation of the NODAL3 code for static cases of the PWR benchmark core", Journal Sains Teknologi Nuklir Ganendra, 15(2): 82-92, (2012).
  • [11] Kuntoro, I., Pinem, S., Sembiring, T. M., "Validation of Pwr-Fuel Code for Static Parameters in the LWR Core Benchmark", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 20(3): 111, (2018). DOI: 10.17146/tdm.2018.20.3.4650.
  • [12] KEPCO, KHNP, "APR1400 Design Control Document Tier 2: Chapter 4 Reactor: Revision 3", (2018).
  • [13] Alnaqbi, J., Hartanto, D., Alnuaimi, R., Imron, M., Gillette, V., "Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO", Journal Nuclear Engineering Technology, 54(2): 764-769, (2022). DOI: 10.1016/j.net.2021.08.012.
  • [14] Imron, M., "Development and verification of open reactor simulator ADPRES", Journal Annals Nuclear Energy, 133: 580-588, (2019). DOI: 10.1016/j.anucene.2019.06.049.
  • [15] Wagner, W. Kretzschmar, H.-J., International Steam Tables Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Second Edition, Berlin Heidelberg: Springer, (2008). DOI: 10.1007/978-3-540-74234-0.
  • [16] Finnemann H., Galati, A., "NEACRP 3-D LWR Transient Benchmark, Final Specifications", (1992), [Online]. Available: https://www.oecd-nea.org/jcms/pl_17240
  • [17] Liem, P. H., Pinem, S., Sembiring, T. M., Tran, H., "Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)", Journal Nuclear Science Technology, 6(1): 1-13, (2016).
  • [18] NEA, OECD, "COBRA-EN, Thermal-Hydraulic Transient Analysis of Reactor Cores", OECD NEA code details, (2001). https://www.oecd-nea.org/tools/abstract/detail/nea-1614/ (accessed Jan. 15, 2025).
  • [19] Isnaini, M. D., Widodo, S., Subekti, M., "The Thermal-Hydraulics Analysis on Radial and Axial Power Fluctuation for AP1000 Reactor", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 17(1): 79-86, (2015).
  • [20] Isnaini, M. D., Subekti, M., "Validation of SIMBAT-PWR using Standard Code of COBRA- EN on Reactor Transient Condition", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 18(1): 41-50, (2016).
  • [21] Arshi, S. S., Mirvakili, S. M., Faghihi, F., "Modified COBRA-EN code to investigate thermal-hydraulic analysis of the Iranian VVER-1000 core", Journal Progress Nuclear Energy, 52(6): 589-595, (2010). DOI: 10.1016/j.pnucene.2010.01.005.
  • [22] Aghaie, M., Zolfaghari, A., Minuchehr, M., Norouzi, A., "Enhancement of COBRA-EN capability for VVER reactors calculations", Journal Annals Nuclear Energy, 46: 234-243, (2012). DOI: 10.1016/j.anucene.2012.03.026.
  • [23] Isnaini, M. D., Saragi, E., Wardani, V. I. S., "Prediction of Ap1000'S Nuclear Reactor Pressure Vessel Temperature During Normal Operation", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 24(3): 99, (2022). DOI: 10.17146/tdm.2022.24.3.6684.
  • [24] Todreas, N. E., Kazimi, M. S., Nuclear Systems I: Thermal Hydraulic Fundamentals. Vol. 1, Second Pri. Hemisphere Publishing Corporation: Taylor & Francis, (1990).

Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400

Year 2025, Volume: 38 Issue: 3, 1431 - 1447
https://doi.org/10.35378/gujs.1508000

Abstract

The important challenge in preparing nuclear reactor safety parameters is in the coupled neutronic and thermohydraulic calculation since the thermohydraulic parameters of the coolant could affect the neutron flux and power distribution. For this reason, it is necessary to carry out accurate calculations for these two parameters. KOMODO is one of the open-source coupled neutronic and thermal-hydraulic (N/TH) calculation codes, while NODAL3 is an in-house coupled N/TH code owned by BRIN. On the other hand, COBRA-EN has also been widely used for steady-state thermohydraulic calculations and could be used to compare the thermal hydraulics solver performance. The APR1400 reactor core was selected under steady-state conditions, either hot zero power (HZP) or critical hot full power (HFP). The calculated core multiplication factor of our HZP model to the reference data is 100 pcm. The radial and axial power distribution calculated by KOMODO and NODAL3 agree with a maximum of 4.78% difference. For steady-state thermal-hydraulics calculations, there was a difference of 1.84% at maximum between KOMODO and COBRA-EN. The KOMODO, NODAL3, and COBRA-EN codes show consistent neutronic and thermohydraulic performance on the APR1400 steady-state calculation model.

References

  • [1] Luthfi, W., Pinem, S., “Validation of SRAC Code System for Neutronic Calculation of the PWR MOX/UO2 Core Benchmark”, Urania - Jurnal Ilmu Daur Bahan Bakar Nuklir, 27(1): 47–56, (2021).
  • [2] Pinem, S., Sembiring, T. M., Surbakti, T., “Neutronic parameters analysis of a PWR fuel element using silicon carbide claddings with SRAC2006/NODAL3 codes”, AIP Conference Proceedings, 2180. (2019).
  • [3] Luthfi, W., Pinem, S., “Calculation of 2-Dimensional PWR MOX/UO2 Core Benchmark OECD NEA 6048 With SRAC Code”, Jurnal Teknolgi Reaktor Nuklir Tri Dasa Mega, 22(3): 89, (2020). DOI: 10.17146/tdm.2020.22.3.5955.
  • [4] Sembiring, T. M., Susilo, J., Pinem, S., “Evaluation of the AP1000 delayed neutron parameters using MCNP6”, Journal of Physics: Conference Series, 962: 012030, (2018).
  • [5] Louis, H. K., “Neutronic Analysis of the VVER-1200 under Normal Operating Conditions”, Journal Nuclear Particle Physic, 11(3): 53–66, (2021). DOI: 10.5923/j.jnpp.20211103.01.
  • [6] Zhao, P., Liu, Z., Yu, T., Xie, J., Chen, Z., Shen, C., “Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor”, Journal Nuclear Engineering Technology, 52(12): 2789–2802, (2020). DOI: 10.1016/j.net.2020.05.023.
  • [7] Safavi, A., Esteki, M. H., Mirvakili, S. M., Arani, M. K., “Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors”, Journal Nuclear Enggineering Technology, 52(8): 1603–1610, (2020). DOI: 10.1016/j.net.2020.01.024.
  • [8] Pinem, S., Sembiring, T. M., Liem, P. H., “NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR)”, Journal of Science Technology Nuclear Installation, 2016: 1–11, (2016). DOI: 10.1155/2016/7538681.
  • [9] Sembiring, T. M., Pinem, S., Liem, P. H., "Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code", Journal Science Technology Nuclear Installation, 2017: 1-8, (2017). DOI: 10.1155/2017/5151890.
  • [10] Sembiring, T. M., Pinem, S., "The validation of the NODAL3 code for static cases of the PWR benchmark core", Journal Sains Teknologi Nuklir Ganendra, 15(2): 82-92, (2012).
  • [11] Kuntoro, I., Pinem, S., Sembiring, T. M., "Validation of Pwr-Fuel Code for Static Parameters in the LWR Core Benchmark", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 20(3): 111, (2018). DOI: 10.17146/tdm.2018.20.3.4650.
  • [12] KEPCO, KHNP, "APR1400 Design Control Document Tier 2: Chapter 4 Reactor: Revision 3", (2018).
  • [13] Alnaqbi, J., Hartanto, D., Alnuaimi, R., Imron, M., Gillette, V., "Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO", Journal Nuclear Engineering Technology, 54(2): 764-769, (2022). DOI: 10.1016/j.net.2021.08.012.
  • [14] Imron, M., "Development and verification of open reactor simulator ADPRES", Journal Annals Nuclear Energy, 133: 580-588, (2019). DOI: 10.1016/j.anucene.2019.06.049.
  • [15] Wagner, W. Kretzschmar, H.-J., International Steam Tables Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Second Edition, Berlin Heidelberg: Springer, (2008). DOI: 10.1007/978-3-540-74234-0.
  • [16] Finnemann H., Galati, A., "NEACRP 3-D LWR Transient Benchmark, Final Specifications", (1992), [Online]. Available: https://www.oecd-nea.org/jcms/pl_17240
  • [17] Liem, P. H., Pinem, S., Sembiring, T. M., Tran, H., "Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)", Journal Nuclear Science Technology, 6(1): 1-13, (2016).
  • [18] NEA, OECD, "COBRA-EN, Thermal-Hydraulic Transient Analysis of Reactor Cores", OECD NEA code details, (2001). https://www.oecd-nea.org/tools/abstract/detail/nea-1614/ (accessed Jan. 15, 2025).
  • [19] Isnaini, M. D., Widodo, S., Subekti, M., "The Thermal-Hydraulics Analysis on Radial and Axial Power Fluctuation for AP1000 Reactor", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 17(1): 79-86, (2015).
  • [20] Isnaini, M. D., Subekti, M., "Validation of SIMBAT-PWR using Standard Code of COBRA- EN on Reactor Transient Condition", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 18(1): 41-50, (2016).
  • [21] Arshi, S. S., Mirvakili, S. M., Faghihi, F., "Modified COBRA-EN code to investigate thermal-hydraulic analysis of the Iranian VVER-1000 core", Journal Progress Nuclear Energy, 52(6): 589-595, (2010). DOI: 10.1016/j.pnucene.2010.01.005.
  • [22] Aghaie, M., Zolfaghari, A., Minuchehr, M., Norouzi, A., "Enhancement of COBRA-EN capability for VVER reactors calculations", Journal Annals Nuclear Energy, 46: 234-243, (2012). DOI: 10.1016/j.anucene.2012.03.026.
  • [23] Isnaini, M. D., Saragi, E., Wardani, V. I. S., "Prediction of Ap1000'S Nuclear Reactor Pressure Vessel Temperature During Normal Operation", Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 24(3): 99, (2022). DOI: 10.17146/tdm.2022.24.3.6684.
  • [24] Todreas, N. E., Kazimi, M. S., Nuclear Systems I: Thermal Hydraulic Fundamentals. Vol. 1, Second Pri. Hemisphere Publishing Corporation: Taylor & Francis, (1990).
There are 24 citations in total.

Details

Primary Language English
Subjects Nuclear Energy Systems
Journal Section Physics
Authors

Surian Pinem 0000-0001-6990-1059

Muhammad Darwis Isnaini 0009-0007-8626-6596

Wahid Luthfı 0000-0002-4499-3433

Early Pub Date May 18, 2025
Publication Date
Submission Date July 3, 2024
Acceptance Date March 10, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Pinem, S., Isnaini, M. D., & Luthfı, W. (n.d.). Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400. Gazi University Journal of Science, 38(3), 1431-1447. https://doi.org/10.35378/gujs.1508000
AMA Pinem S, Isnaini MD, Luthfı W. Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400. Gazi University Journal of Science. 38(3):1431-1447. doi:10.35378/gujs.1508000
Chicago Pinem, Surian, Muhammad Darwis Isnaini, and Wahid Luthfı. “Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400”. Gazi University Journal of Science 38, no. 3 n.d.: 1431-47. https://doi.org/10.35378/gujs.1508000.
EndNote Pinem S, Isnaini MD, Luthfı W Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400. Gazi University Journal of Science 38 3 1431–1447.
IEEE S. Pinem, M. D. Isnaini, and W. Luthfı, “Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1431–1447, doi: 10.35378/gujs.1508000.
ISNAD Pinem, Surian et al. “Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400”. Gazi University Journal of Science 38/3 (n.d.), 1431-1447. https://doi.org/10.35378/gujs.1508000.
JAMA Pinem S, Isnaini MD, Luthfı W. Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400. Gazi University Journal of Science.;38:1431–1447.
MLA Pinem, Surian et al. “Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400”. Gazi University Journal of Science, vol. 38, no. 3, pp. 1431-47, doi:10.35378/gujs.1508000.
Vancouver Pinem S, Isnaini MD, Luthfı W. Comparison of Neutronic and Thermal-Hydraulic Performance of KOMODO, NODAL3, and COBRA for Steady-State Operation of APR1400. Gazi University Journal of Science. 38(3):1431-47.