Research Article
BibTex RIS Cite

Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis

Year 2025, Volume: 38 Issue: 3, 1359 - 1372
https://doi.org/10.35378/gujs.1558496

Abstract

This study utilizes machine learning models to forecast Türkiye's Consumer Price Index (CPI), thereby addressing a critical gap in inflation prediction methodologies. The central research problem involves the forecasting of CPI in a volatile economic environment, which is essential for informed policymaking. The primary objective of this study is to evaluate the performance of three machine learning models, such as Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM), in forecasting CPI over periods ranging from one to six months, utilizing data from 2012 to 2024. The study's unique contribution lies in the application of the "SelectKBest" method, which identifies the most relevant indices, thereby enhancing the efficiency of the models. An ensemble method, Averaging Voting, is also employed to combine the strengths of these models, producing more accurate and robust predictions. The findings indicate that while the RF model consistently generates the most accurate forecasts across all shifts, the SVM model demonstrates a particular strength in the domain of short-term predictions. The ensemble model demonstrates a substantial performance improvement, with a R2 value of 0.962 for one-month ahead of estimates and 0.956 for five-month forecasts. This combined approach has been shown to outperform individual models, offering a more reliable framework for CPI forecasting. The findings offer valuable insights for economic policymakers, enabling more precise and stable inflation predictions in Türkiye.

References

  • [1] Jain, M., Kostyshyna, O., and Zhang, X, “How do people view wage and price inflation?”, Journal of Monetary Economics, 145: 103552, (2024). DOI: https://doi.org/10.1016/J.Jmoneco.2024.01.005
  • [2] Zhu, P., Zhou, Q., and Zhang, Y., “Investor attention and consumer price index inflation rate: evidence from the United States”, Humanities and Social Sciences Communications, 11(1): 541, (2024). DOI: https://doi.org/10.1057/S41599-024-03036-Y
  • [3] Uçucu, A., Gök, B., and Gökçen, H., “Prediction of life quality index value rankings of countries after the covıd-19 pandemic by artificial neural networks”, Politeknik Dergisi, 27(2): 689–698, (2024). DOI: https://doi.org/10.2339/Politeknik.1113718
  • [4] Poudel, O., Kharel, K. R., Acharya, P., Simkhada, D., and Kafle, S. C., “Arima modeling and forecasting of national consumer price index in Nepal”, Interdisciplinary Journal of Management and Social Sciences, 5(1): 105–118, (2024). DOI: https://doi.org/10.3126/İjmss.V5i1.62666
  • [5] Investing.Com, “Investing.com.” Accessed: Jul. 04, 2024. [Online]. Available: https://tr.investing.com/
  • [6] Palumbo, L., and Laureti, T., “Finding the Goldilocks data collection frequency for the consumer price index”, SSRN Electronic Journal, (2024). DOI: https://doi.org/10.2139/ssrn.4832198
  • [7] Cui, Q., Rong, S., Zhang, F., Wang, X., “Exploring and predicting China’s consumer price index with its influence factors via big data analysis”, Journal of Intelligent & Fuzzy Systems, 46(1): 891-901, (2023). DOI: https://doi.org/10.3233/jifs-234102
  • [8] Shinkarenko, V., Hostryk, A., Shynkarenko, L., and Dolinskyi, L., “A forecasting the consumer price index using time series model”, Shs Web of Conferences, 107: 10002, (2021). DOI: https://doi.org/10.1051/Shsconf/202110710002
  • [9] Mwanga, Y., “Arima forecasting model for Uganda’s consumer price index”, American Journal of Theoretical and Applied Statistics, 9(5): 238-244, (2020). DOI: https://doi.org/10.11648/J.Ajtas.20200905.17
  • [10] Nyoni, T., “Arima modeling and forecasting of consumer price index (CPI) in Germany”, University Library of Munich, (2019).
  • [11] Hu, Q., “Forecasting analysis of the Hungarian CPI based on the arima model”, Highlights in Business, Economics and Management, 28: 240–245, (2024). DOI: https://doi.org/10.54097/ybwgbd39
  • [12] Ibrahim, A., Sani, U. M., and Olokojo, V. O., “Forecastıng consumer price index and exchange rate using arima models: empirical evidence from Nigeria”, Fudma Journal of Sciences, 6(6): 114–124, (2023). DOI: https://doi.org/10.33003/Fjs-2022-0606-1136
  • [13] Deka, A. and Resatoglu, N. G., “Forecasting foreign exchange rate and consumer price index with arima model: the case of Turkey”, International Journal of Scientific Research and Management, 7(8): 1254-1275, (2019). DOI: https://doi.org/https://doi.org/10.18535/ijsrm/v7i8.em01
  • [14] Radzi, H. M. and Abu Bakar, A. S., “Forecasting GDP and CPI of the Malaysian economy using arıma models”, 8th Annual Ecofı Symposium 2022, (2022).
  • [15] Boniface, A. and Martin, A., “Time series modeling and forecasting of consumer price index in Ghana”, Journal of Advances in Mathematics and Computer Science, 32(1): 1–11, (2019). DOI: https://doi.org/10.9734/Jamcs/2019/V32i130134
  • [16] Norbert, H., “Modeling and forecasting consumer price index (case of Rwanda)”, American Journal of Theoretical and Applied Statistics, 5(3): 101-107, (2016). DOI: https://doi.org/10.11648/J.Ajtas.20160503.14
  • [17] Mia, M. S., Shahajada Mia, M., Musfiqur, M., Nabeen, R., and Masrufa Akter, M., “Modelling and forecasting the consumer price index in Bangladesh through econometric models”, American Scientific Research Journal for Engineering, Technology, and Sciences, 59(1): 118–127, (2019).
  • [18] Mohamed, J., “Time series modeling and forecasting of Somaliland consumer price index: a comparison of arima and regression with arima errors”, American Journal of Theoretical and Applied Statistics, 9(4): 143-153, (2020). DOI: https://doi.org/10.11648/J.Ajtas.20200904.18
  • [19] Nyoni, T., “Time series modeling and forecasting of the consumer price index in Belgium”, Mpra Paper, University Library of Munich Germany, (2019).
  • [20] Purbasari, I. Y., Anggraeny, F. T., and Ardiningrum, N. A., “Time-series modeling for consumer price index forecasting using comparison analysis of autoregressive integrated moving average and artificial neural network”, Scitepress, 599–604, (2021). DOI: https://doi.org/10.5220/0010369205990604
  • [21] Weng, D., “The consumer price index forecast based on arima model”, in Proceedings - 2010 Wase International Conference on Information Engineering, 307–310, (2010). DOI: https://doi.org/10.1109/Icıe.2010.79
  • [22] Asati, A., “A comparative study on forecasting consumer price index of India amongst xgboost, theta, arima, prophet and LSTM algorithms”, Osf Preprint, Center for Open Science, (2022).
  • [23] Sibai, F. N., El-Moursy, A., and Sibai, A., “Forecasting the consumer price index: a comparative study of machine learning methods”, International Journal of Computing and Digital Systems, 15(1): 487–497, (2024). DOI: https://doi.org/10.12785/İjcds/150137
  • [24] Joseph, A., Potjagailo, G., Chakraborty, C., and Kapetanios, G., “Forecasting UK inflation bottom up”, International Journal of Forecasting, 40(4): 1521-1538, (2024). DOI: https://doi.org/10.1016/J.İjforecast.2024.01.001
  • [25] Qin, X., Sun, M., Dong, X., and Zhang, Y., “Forecasting of China consumer price index based on EEMD and SVR method”, in Proceedings - 2nd International Conference on Data Science and Business Analytics, Icdsba 2018, Institute of Electrical and Electronics Engineers Inc., 329–333, (2018). DOI: https://doi.org/10.1109/Icdsba.2018.00069
  • [26] Riofrio, J., Infante, S., and Hernández, A., “Forecasting the consumer price index of Ecuador using classical and advanced time series models”, in Communications in Computer and Information Science, Springer Science and Business Media Deutschland Gmbh, 1885: 128–144, (2023). DOI: https://doi.org/10.1007/978-3-031-45438-7_9
  • [27] Nguyen, T. T., Nguyen, H. G., Lee, J. Y., Wang, Y. L., and Tsai, C. S., “The consumer price index prediction using machine learning approaches: evidence from the United States”, Heliyon, 9(10), (2023). DOI: https://doi.org/10.1016/J.Heliyon.2023.E20730
  • [28] Cobbinah, M. and Alnaggar, A., “An attention encoder-decoder RNN model with teacher forcing for predicting consumer price index”, Journal of Data, Information and Management, 6(1): 65–83, (2024). DOI: https://doi.org/10.1007/S42488-024-00114-3
  • [29] Álvarez-Díaz, M. and Gupta, R., “Forecasting us consumer price index: does nonlinearity matter?”, Applied Economics, 48(46): 4462–4475, (2016). DOI: https://doi.org/10.1080/00036846.2016.1158922
  • [30] Njenga, J. K., “Analysis and forecasting of consumer price index (CPI) in Kenya and South Africa using holt winter model”, Asian Journal of Economics, Business and Accounting, 24(4): 322–331, (2024). DOI: https://doi.org/10.9734/ajeba/2024/v24i41283
  • [31] Ali, A. and Mahgoub, A., “Prediction of CPI in Saudi Arabia: holt’s linear trend approach”, Research in World Economy, 11(6): 302-310, (2020). DOI: https://doi.org/10.5430/Rwe.V11n6p302
  • [32] Permatasari, N. P., Chotimah, H., Permana, P., Tarigan, W. S., Toharudin, T., and Ruchjana, B. N., “Application of GSTARI (1,1,1) model for forecasting the consumer price index (CPI) in three cities in Central Java”, Jurnal Teori Dan Aplikasi Matematika, 6(1): 134-143, (2022). DOI: https://doi.org/10.31764/Jtam.V6i1.6114
  • [33] Aabeyir, B., “Forecasting the consumer price index of Ghana using exponential smoothing methods”, Mathematical Theory and Modeling, 9(3): 1-10, (2019). DOI: https://doi.org/10.7176/MTM/9-3-01
  • [34] Hassani, H. and Silva, E. S., “Forecasting UK consumer price inflation using inflation forecasts”, Research in Economics, 72(3): 367–378, (2018). DOI: https://doi.org/10.1016/J.Rie.2018.07.001
  • [35] Zahara, S. and Sugianto, S., “Multivariate time series forecasting based cloud computing for consumer price index using deep learning algorithms”, in 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems, Isrıtı 2020, Institute of Electrical and Electronics Engineers Inc., 338–343. (2020). DOI: https://doi.org/10.1109/ISRITI51436.2020.9315465
  • [36] Febriyanti, S., Pradana, W. A., Muhammad, J. S., and Widodo, E., “Forecasting the consumer price index in Yogyakarta by using the double exponential smoothing method”, Parameter Journal of Statistics, 2(1): 1–7, (2021). DOI: https://doi.org/10.22487/27765660.2021.v2.i1.15641
  • [37] Gjika Dhamo, E., Puka, L., and Zaçaj, O., “Forecasting consumer price index (CPI) using time series models and multi regression models (Albania case study)”, Vilnius Gediminas Technical University, 466-472, (2018). DOI: https://doi.org/10.3846/Bm.2018.51
  • [38] Nalici, M. E., Söylemez, İ., and Ünlü, R., “Symbolic aggregate approximation-based clustering of monthly natural gas consumption”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(1): 307–313, (2024). DOI: https://doi.org/10.17798/Bitlisfen.1395411
  • [39] Nalici, M. E., Söylemez, I., and Ünlü, R. “Strategic investment in bist100: a machine learning approach using symbolic aggregate approximation clustering”, International Journal of Industrial Engineering: Theory, Applications and Practice, 32(2): 382-395, (2025). DOI: https://doi.org/10.23055/ijietap.2025.32.2.10273
  • [40] Doğan, A., Özcan, U., and Söylemez, İ., “Trafik kazalarında birliktelik kuralı analizi: ankara ili örneği”, Ege Akademik Bakis (Ege Academic Review), 16(Ozel): 11-20, (2016). DOI: https://doi.org/10.21121/eab.2016OZEL24423
  • [41] Nalici, M. E., Söylemez, İ., and Ünlü, R., “Türkiye ‘de tahıl üretiminin tahminlemesi: karşılaştırmalı analiz”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(2): 288–303, (2024).
  • [42] Ünlü, R., “Classification of historical Anatolian coins with machine learning algorithms”, Alphanumeric Journal, 7(2): 275–288, (2019). DOI: https://doi.org/10.17093/Alphanumeric.620095
  • [43] Güler, M., Kabakçı, A., Koç, Ö., Eraslan, E., Derin, K. H., Güler, M., Ünlü, R., Türkan, Y. S., and Namlı, E. “Forecasting of the unemployment rate in Turkey: comparison of the machine learning models”, Sustainability, 16(15): 6509, (2024). DOI: https://doi.org/10.3390/su16156509
  • [44] Khalyasmaa, A. Eroshenko, S. A., Chakravarthy, T. P., Gasi, V. G., Bollu, S. K. Y., Caire, R., “Prediction of solar power generation based on random forest regressor model”, in 2019 International Multi-Conference on Engineering, Computer and Information Sciences (Sıbırcon), 780–785, (2019). DOI: https://doi.org/10.1109/SIBIRCON48586.2019.8958063
  • [45] Luo, H., Cheng, F., Yu, H., and Yi, Y., “Sdtr: soft decision tree regressor for tabular data”, Ieee Access, 9: 55999–56011, (2021). DOI: https://doi.org/10.1109/Access.2021.3070575
  • [46] Kavya, D, “Optimizing performance: selectkbest for efficient feature selection in machine learning”, Accessed: Jul. 04, 2024. [Online]. Available: Https://Medium.Com/@Kavya2099/Optimizing-Performance-Selectkbest-For-Efficient-Feature-Selection-İn-Machine-Learning-3b635905ed48
  • [47] Kavitha, S, Varuna, S, and Ramya, R, “A comparative analysis on linear regression and support vector regression”, in 2016 Online International Conference on Green Engineering and Technologies (Ic-Get), 1–5, (2016). DOI: https://doi.org/10.1109/Get.2016.7916627
  • [48] Feurer, M. and Hutter, F., “Hyperparameter optimization”, Automated Machine Learning, 3–33, (2019). DOI: https://doi.org/10.1007/978-3-030-05318-5_1
  • [49] Dietterich T. G., “Ensemble methods in machine learning”, Multiple Classifier Systems, 1–15, (2000). DOI: https://doi.org/10.1007/3-540-45014-9_1
  • [50] Breiman, L., “Bagging predictors”, Machine Learning, 24(2): 123–140, (1996). DOI: https://doi.org/10.1007/Bf00058655
  • [51] Freund, Y. and Schapire, R. E., “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer System Sciences, 55(1): 119–139, (1997). DOI: https://doi.org/10.1006/Jcss.1997.1504
  • [52] An, K. and Meng, J., “Voting-averaged combination method for regressor ensemble”, Advanced Intelligent Computing Theories and Applications, 540–546, (2010). DOI: https://doi.org/10.1007/978-3-642-14922-1_67
Year 2025, Volume: 38 Issue: 3, 1359 - 1372
https://doi.org/10.35378/gujs.1558496

Abstract

References

  • [1] Jain, M., Kostyshyna, O., and Zhang, X, “How do people view wage and price inflation?”, Journal of Monetary Economics, 145: 103552, (2024). DOI: https://doi.org/10.1016/J.Jmoneco.2024.01.005
  • [2] Zhu, P., Zhou, Q., and Zhang, Y., “Investor attention and consumer price index inflation rate: evidence from the United States”, Humanities and Social Sciences Communications, 11(1): 541, (2024). DOI: https://doi.org/10.1057/S41599-024-03036-Y
  • [3] Uçucu, A., Gök, B., and Gökçen, H., “Prediction of life quality index value rankings of countries after the covıd-19 pandemic by artificial neural networks”, Politeknik Dergisi, 27(2): 689–698, (2024). DOI: https://doi.org/10.2339/Politeknik.1113718
  • [4] Poudel, O., Kharel, K. R., Acharya, P., Simkhada, D., and Kafle, S. C., “Arima modeling and forecasting of national consumer price index in Nepal”, Interdisciplinary Journal of Management and Social Sciences, 5(1): 105–118, (2024). DOI: https://doi.org/10.3126/İjmss.V5i1.62666
  • [5] Investing.Com, “Investing.com.” Accessed: Jul. 04, 2024. [Online]. Available: https://tr.investing.com/
  • [6] Palumbo, L., and Laureti, T., “Finding the Goldilocks data collection frequency for the consumer price index”, SSRN Electronic Journal, (2024). DOI: https://doi.org/10.2139/ssrn.4832198
  • [7] Cui, Q., Rong, S., Zhang, F., Wang, X., “Exploring and predicting China’s consumer price index with its influence factors via big data analysis”, Journal of Intelligent & Fuzzy Systems, 46(1): 891-901, (2023). DOI: https://doi.org/10.3233/jifs-234102
  • [8] Shinkarenko, V., Hostryk, A., Shynkarenko, L., and Dolinskyi, L., “A forecasting the consumer price index using time series model”, Shs Web of Conferences, 107: 10002, (2021). DOI: https://doi.org/10.1051/Shsconf/202110710002
  • [9] Mwanga, Y., “Arima forecasting model for Uganda’s consumer price index”, American Journal of Theoretical and Applied Statistics, 9(5): 238-244, (2020). DOI: https://doi.org/10.11648/J.Ajtas.20200905.17
  • [10] Nyoni, T., “Arima modeling and forecasting of consumer price index (CPI) in Germany”, University Library of Munich, (2019).
  • [11] Hu, Q., “Forecasting analysis of the Hungarian CPI based on the arima model”, Highlights in Business, Economics and Management, 28: 240–245, (2024). DOI: https://doi.org/10.54097/ybwgbd39
  • [12] Ibrahim, A., Sani, U. M., and Olokojo, V. O., “Forecastıng consumer price index and exchange rate using arima models: empirical evidence from Nigeria”, Fudma Journal of Sciences, 6(6): 114–124, (2023). DOI: https://doi.org/10.33003/Fjs-2022-0606-1136
  • [13] Deka, A. and Resatoglu, N. G., “Forecasting foreign exchange rate and consumer price index with arima model: the case of Turkey”, International Journal of Scientific Research and Management, 7(8): 1254-1275, (2019). DOI: https://doi.org/https://doi.org/10.18535/ijsrm/v7i8.em01
  • [14] Radzi, H. M. and Abu Bakar, A. S., “Forecasting GDP and CPI of the Malaysian economy using arıma models”, 8th Annual Ecofı Symposium 2022, (2022).
  • [15] Boniface, A. and Martin, A., “Time series modeling and forecasting of consumer price index in Ghana”, Journal of Advances in Mathematics and Computer Science, 32(1): 1–11, (2019). DOI: https://doi.org/10.9734/Jamcs/2019/V32i130134
  • [16] Norbert, H., “Modeling and forecasting consumer price index (case of Rwanda)”, American Journal of Theoretical and Applied Statistics, 5(3): 101-107, (2016). DOI: https://doi.org/10.11648/J.Ajtas.20160503.14
  • [17] Mia, M. S., Shahajada Mia, M., Musfiqur, M., Nabeen, R., and Masrufa Akter, M., “Modelling and forecasting the consumer price index in Bangladesh through econometric models”, American Scientific Research Journal for Engineering, Technology, and Sciences, 59(1): 118–127, (2019).
  • [18] Mohamed, J., “Time series modeling and forecasting of Somaliland consumer price index: a comparison of arima and regression with arima errors”, American Journal of Theoretical and Applied Statistics, 9(4): 143-153, (2020). DOI: https://doi.org/10.11648/J.Ajtas.20200904.18
  • [19] Nyoni, T., “Time series modeling and forecasting of the consumer price index in Belgium”, Mpra Paper, University Library of Munich Germany, (2019).
  • [20] Purbasari, I. Y., Anggraeny, F. T., and Ardiningrum, N. A., “Time-series modeling for consumer price index forecasting using comparison analysis of autoregressive integrated moving average and artificial neural network”, Scitepress, 599–604, (2021). DOI: https://doi.org/10.5220/0010369205990604
  • [21] Weng, D., “The consumer price index forecast based on arima model”, in Proceedings - 2010 Wase International Conference on Information Engineering, 307–310, (2010). DOI: https://doi.org/10.1109/Icıe.2010.79
  • [22] Asati, A., “A comparative study on forecasting consumer price index of India amongst xgboost, theta, arima, prophet and LSTM algorithms”, Osf Preprint, Center for Open Science, (2022).
  • [23] Sibai, F. N., El-Moursy, A., and Sibai, A., “Forecasting the consumer price index: a comparative study of machine learning methods”, International Journal of Computing and Digital Systems, 15(1): 487–497, (2024). DOI: https://doi.org/10.12785/İjcds/150137
  • [24] Joseph, A., Potjagailo, G., Chakraborty, C., and Kapetanios, G., “Forecasting UK inflation bottom up”, International Journal of Forecasting, 40(4): 1521-1538, (2024). DOI: https://doi.org/10.1016/J.İjforecast.2024.01.001
  • [25] Qin, X., Sun, M., Dong, X., and Zhang, Y., “Forecasting of China consumer price index based on EEMD and SVR method”, in Proceedings - 2nd International Conference on Data Science and Business Analytics, Icdsba 2018, Institute of Electrical and Electronics Engineers Inc., 329–333, (2018). DOI: https://doi.org/10.1109/Icdsba.2018.00069
  • [26] Riofrio, J., Infante, S., and Hernández, A., “Forecasting the consumer price index of Ecuador using classical and advanced time series models”, in Communications in Computer and Information Science, Springer Science and Business Media Deutschland Gmbh, 1885: 128–144, (2023). DOI: https://doi.org/10.1007/978-3-031-45438-7_9
  • [27] Nguyen, T. T., Nguyen, H. G., Lee, J. Y., Wang, Y. L., and Tsai, C. S., “The consumer price index prediction using machine learning approaches: evidence from the United States”, Heliyon, 9(10), (2023). DOI: https://doi.org/10.1016/J.Heliyon.2023.E20730
  • [28] Cobbinah, M. and Alnaggar, A., “An attention encoder-decoder RNN model with teacher forcing for predicting consumer price index”, Journal of Data, Information and Management, 6(1): 65–83, (2024). DOI: https://doi.org/10.1007/S42488-024-00114-3
  • [29] Álvarez-Díaz, M. and Gupta, R., “Forecasting us consumer price index: does nonlinearity matter?”, Applied Economics, 48(46): 4462–4475, (2016). DOI: https://doi.org/10.1080/00036846.2016.1158922
  • [30] Njenga, J. K., “Analysis and forecasting of consumer price index (CPI) in Kenya and South Africa using holt winter model”, Asian Journal of Economics, Business and Accounting, 24(4): 322–331, (2024). DOI: https://doi.org/10.9734/ajeba/2024/v24i41283
  • [31] Ali, A. and Mahgoub, A., “Prediction of CPI in Saudi Arabia: holt’s linear trend approach”, Research in World Economy, 11(6): 302-310, (2020). DOI: https://doi.org/10.5430/Rwe.V11n6p302
  • [32] Permatasari, N. P., Chotimah, H., Permana, P., Tarigan, W. S., Toharudin, T., and Ruchjana, B. N., “Application of GSTARI (1,1,1) model for forecasting the consumer price index (CPI) in three cities in Central Java”, Jurnal Teori Dan Aplikasi Matematika, 6(1): 134-143, (2022). DOI: https://doi.org/10.31764/Jtam.V6i1.6114
  • [33] Aabeyir, B., “Forecasting the consumer price index of Ghana using exponential smoothing methods”, Mathematical Theory and Modeling, 9(3): 1-10, (2019). DOI: https://doi.org/10.7176/MTM/9-3-01
  • [34] Hassani, H. and Silva, E. S., “Forecasting UK consumer price inflation using inflation forecasts”, Research in Economics, 72(3): 367–378, (2018). DOI: https://doi.org/10.1016/J.Rie.2018.07.001
  • [35] Zahara, S. and Sugianto, S., “Multivariate time series forecasting based cloud computing for consumer price index using deep learning algorithms”, in 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems, Isrıtı 2020, Institute of Electrical and Electronics Engineers Inc., 338–343. (2020). DOI: https://doi.org/10.1109/ISRITI51436.2020.9315465
  • [36] Febriyanti, S., Pradana, W. A., Muhammad, J. S., and Widodo, E., “Forecasting the consumer price index in Yogyakarta by using the double exponential smoothing method”, Parameter Journal of Statistics, 2(1): 1–7, (2021). DOI: https://doi.org/10.22487/27765660.2021.v2.i1.15641
  • [37] Gjika Dhamo, E., Puka, L., and Zaçaj, O., “Forecasting consumer price index (CPI) using time series models and multi regression models (Albania case study)”, Vilnius Gediminas Technical University, 466-472, (2018). DOI: https://doi.org/10.3846/Bm.2018.51
  • [38] Nalici, M. E., Söylemez, İ., and Ünlü, R., “Symbolic aggregate approximation-based clustering of monthly natural gas consumption”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(1): 307–313, (2024). DOI: https://doi.org/10.17798/Bitlisfen.1395411
  • [39] Nalici, M. E., Söylemez, I., and Ünlü, R. “Strategic investment in bist100: a machine learning approach using symbolic aggregate approximation clustering”, International Journal of Industrial Engineering: Theory, Applications and Practice, 32(2): 382-395, (2025). DOI: https://doi.org/10.23055/ijietap.2025.32.2.10273
  • [40] Doğan, A., Özcan, U., and Söylemez, İ., “Trafik kazalarında birliktelik kuralı analizi: ankara ili örneği”, Ege Akademik Bakis (Ege Academic Review), 16(Ozel): 11-20, (2016). DOI: https://doi.org/10.21121/eab.2016OZEL24423
  • [41] Nalici, M. E., Söylemez, İ., and Ünlü, R., “Türkiye ‘de tahıl üretiminin tahminlemesi: karşılaştırmalı analiz”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(2): 288–303, (2024).
  • [42] Ünlü, R., “Classification of historical Anatolian coins with machine learning algorithms”, Alphanumeric Journal, 7(2): 275–288, (2019). DOI: https://doi.org/10.17093/Alphanumeric.620095
  • [43] Güler, M., Kabakçı, A., Koç, Ö., Eraslan, E., Derin, K. H., Güler, M., Ünlü, R., Türkan, Y. S., and Namlı, E. “Forecasting of the unemployment rate in Turkey: comparison of the machine learning models”, Sustainability, 16(15): 6509, (2024). DOI: https://doi.org/10.3390/su16156509
  • [44] Khalyasmaa, A. Eroshenko, S. A., Chakravarthy, T. P., Gasi, V. G., Bollu, S. K. Y., Caire, R., “Prediction of solar power generation based on random forest regressor model”, in 2019 International Multi-Conference on Engineering, Computer and Information Sciences (Sıbırcon), 780–785, (2019). DOI: https://doi.org/10.1109/SIBIRCON48586.2019.8958063
  • [45] Luo, H., Cheng, F., Yu, H., and Yi, Y., “Sdtr: soft decision tree regressor for tabular data”, Ieee Access, 9: 55999–56011, (2021). DOI: https://doi.org/10.1109/Access.2021.3070575
  • [46] Kavya, D, “Optimizing performance: selectkbest for efficient feature selection in machine learning”, Accessed: Jul. 04, 2024. [Online]. Available: Https://Medium.Com/@Kavya2099/Optimizing-Performance-Selectkbest-For-Efficient-Feature-Selection-İn-Machine-Learning-3b635905ed48
  • [47] Kavitha, S, Varuna, S, and Ramya, R, “A comparative analysis on linear regression and support vector regression”, in 2016 Online International Conference on Green Engineering and Technologies (Ic-Get), 1–5, (2016). DOI: https://doi.org/10.1109/Get.2016.7916627
  • [48] Feurer, M. and Hutter, F., “Hyperparameter optimization”, Automated Machine Learning, 3–33, (2019). DOI: https://doi.org/10.1007/978-3-030-05318-5_1
  • [49] Dietterich T. G., “Ensemble methods in machine learning”, Multiple Classifier Systems, 1–15, (2000). DOI: https://doi.org/10.1007/3-540-45014-9_1
  • [50] Breiman, L., “Bagging predictors”, Machine Learning, 24(2): 123–140, (1996). DOI: https://doi.org/10.1007/Bf00058655
  • [51] Freund, Y. and Schapire, R. E., “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer System Sciences, 55(1): 119–139, (1997). DOI: https://doi.org/10.1006/Jcss.1997.1504
  • [52] An, K. and Meng, J., “Voting-averaged combination method for regressor ensemble”, Advanced Intelligent Computing Theories and Applications, 540–546, (2010). DOI: https://doi.org/10.1007/978-3-642-14922-1_67
There are 52 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Industrial Engineering
Authors

Mehmet Eren Nalici 0000-0002-7954-6916

İsmet Soylemez 0000-0002-8253-9389

Ramazan Ünlü 0000-0002-1201-195X

Early Pub Date July 29, 2025
Publication Date
Submission Date September 30, 2024
Acceptance Date June 16, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Nalici, M. E., Soylemez, İ., & Ünlü, R. (n.d.). Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis. Gazi University Journal of Science, 38(3), 1359-1372. https://doi.org/10.35378/gujs.1558496
AMA Nalici ME, Soylemez İ, Ünlü R. Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis. Gazi University Journal of Science. 38(3):1359-1372. doi:10.35378/gujs.1558496
Chicago Nalici, Mehmet Eren, İsmet Soylemez, and Ramazan Ünlü. “Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis”. Gazi University Journal of Science 38, no. 3 n.d.: 1359-72. https://doi.org/10.35378/gujs.1558496.
EndNote Nalici ME, Soylemez İ, Ünlü R Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis. Gazi University Journal of Science 38 3 1359–1372.
IEEE M. E. Nalici, İ. Soylemez, and R. Ünlü, “Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1359–1372, doi: 10.35378/gujs.1558496.
ISNAD Nalici, Mehmet Eren et al. “Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis”. Gazi University Journal of Science 38/3 (n.d.), 1359-1372. https://doi.org/10.35378/gujs.1558496.
JAMA Nalici ME, Soylemez İ, Ünlü R. Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis. Gazi University Journal of Science.;38:1359–1372.
MLA Nalici, Mehmet Eren et al. “Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis”. Gazi University Journal of Science, vol. 38, no. 3, pp. 1359-72, doi:10.35378/gujs.1558496.
Vancouver Nalici ME, Soylemez İ, Ünlü R. Forecasting the Consumer Price Index in Türkiye Using Machine Learning Models: A Comparative Analysis. Gazi University Journal of Science. 38(3):1359-72.