Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 4, 2065 - 2077, 01.12.2025
https://doi.org/10.35378/gujs.1598374

Abstract

References

  • [1] Anastassiou, G.A., Gal, S.G., “Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks”, Computers and Mathematics with Applications, 58: 734–743, (2009). DOI: https://doi.org/10.1016/j.camwa.2009.04.009
  • [2] Gal, S.G., Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 1–336, (2009).
  • [3] Dzyadyk, V.K., Shevchuk, I.A., Theory of uniform approximation of functions by polynomials, Walter de Gruyter GmbH & Co. KG, Berlin, 1–437, (2008).
  • [4] Çetin, N., “A new complex generalized Bernstein-Schurer operator”, Carpathian Journal of Mathematics, 37(1): 81–89, (2021). DOI: https://doi.org/10.37193/CJM.2021.01.08
  • [5] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R., “A new approach to improve the order of approximation of the Bernstein operators: Theory and applications”, Numerical Algorithms, 77(1): 111–150, (2018). DOI: https://doi.org/10.1007/s11075-017-0307-z
  • [6] Acu, A.M., Gupta, V., Tachev, G., “Better numerical approximation by Durrmeyer type operators”, Results in Mathematics, 74: 90, (2019). DOI: https://doi.org/10.1007/s00025-019-1019-6
  • [7] Acu, A.M., Gonska, H., “Perturbed Bernstein-type operators”, Analysis and Mathematical Physics, 10: 49, (2020). DOI: https://doi.org/10.1007/s13324-020-00389-w
  • [8] Acu, A.M., Başcanbaz-Tunca, G., Çetin, N., “Approximation by certain linking operators”, Annals of Functional Analysis, 11: 1184–1202, (2020). DOI: https://doi.org/10.1007/s43034-020-00081-x
  • [9] Acu, A.M., Başcanbaz-Tunca, G., “Approximation by complex perturbed Bernstein-type operators”, Results in Mathematics, 75: 120, (2020). DOI: https://doi.org/10.1007/s00025-020-01244-x
  • [10] Acu, A.M., Çetin, N., Tachev, G., “Approximation by perturbed Baskakov-type operators”, Journal of Mathematical Inequalities, 18(2): 551–563, (2024). DOI: https//doi.org/10.7153/jmi-2024-18-30
  • [11] Acu, A.M., Mutlu, G., Çekim, B., Yazıcı, S., “A new representation and shape preserving properties of perturbed Bernstein operators”, Mathematical Methods in the Applied Sciences, 47(1): 5–14, (2024). DOI: https://doi.org/10.1002/mma.9636
  • [12] Çetin, N., “On complex modified Bernstein-Stancu operators”, Mathematical Foundations of Computing, 6(1): 63–77, (2023). DOI: https://doi.org/10.3934/mfc.2021043
  • [13] Çetin, N., “Approximation by α-Bernstein-Schurer operator”, Hacettepe Journal of Mathematics & Statistics, 50(3): 732–743, (2021). DOI: https://doi.org/10.15672/hujms.626905
  • [14] Bărbosu, D., Bărbosu, M., “Simultaneous approximation by Schurer type operators”, Carpathian Journal of Mathematics, 19(1): 1–6, (2003).

Complex Perturbed Bernstein-Schurer-Type Operators

Year 2025, Volume: 38 Issue: 4, 2065 - 2077, 01.12.2025
https://doi.org/10.35378/gujs.1598374

Abstract

In the present paper, we describe a new generalization of complex Bernstein-Schurer operators. We attain quantitative upper estimates for the convergence, lower estimates from a qualitative Voronovskaya type result and afterwards establish the exact degree of simultaneous approximation by the specified operator attached to analytical functions in a disk centered at the origin having radius greater than one.

References

  • [1] Anastassiou, G.A., Gal, S.G., “Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks”, Computers and Mathematics with Applications, 58: 734–743, (2009). DOI: https://doi.org/10.1016/j.camwa.2009.04.009
  • [2] Gal, S.G., Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 1–336, (2009).
  • [3] Dzyadyk, V.K., Shevchuk, I.A., Theory of uniform approximation of functions by polynomials, Walter de Gruyter GmbH & Co. KG, Berlin, 1–437, (2008).
  • [4] Çetin, N., “A new complex generalized Bernstein-Schurer operator”, Carpathian Journal of Mathematics, 37(1): 81–89, (2021). DOI: https://doi.org/10.37193/CJM.2021.01.08
  • [5] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R., “A new approach to improve the order of approximation of the Bernstein operators: Theory and applications”, Numerical Algorithms, 77(1): 111–150, (2018). DOI: https://doi.org/10.1007/s11075-017-0307-z
  • [6] Acu, A.M., Gupta, V., Tachev, G., “Better numerical approximation by Durrmeyer type operators”, Results in Mathematics, 74: 90, (2019). DOI: https://doi.org/10.1007/s00025-019-1019-6
  • [7] Acu, A.M., Gonska, H., “Perturbed Bernstein-type operators”, Analysis and Mathematical Physics, 10: 49, (2020). DOI: https://doi.org/10.1007/s13324-020-00389-w
  • [8] Acu, A.M., Başcanbaz-Tunca, G., Çetin, N., “Approximation by certain linking operators”, Annals of Functional Analysis, 11: 1184–1202, (2020). DOI: https://doi.org/10.1007/s43034-020-00081-x
  • [9] Acu, A.M., Başcanbaz-Tunca, G., “Approximation by complex perturbed Bernstein-type operators”, Results in Mathematics, 75: 120, (2020). DOI: https://doi.org/10.1007/s00025-020-01244-x
  • [10] Acu, A.M., Çetin, N., Tachev, G., “Approximation by perturbed Baskakov-type operators”, Journal of Mathematical Inequalities, 18(2): 551–563, (2024). DOI: https//doi.org/10.7153/jmi-2024-18-30
  • [11] Acu, A.M., Mutlu, G., Çekim, B., Yazıcı, S., “A new representation and shape preserving properties of perturbed Bernstein operators”, Mathematical Methods in the Applied Sciences, 47(1): 5–14, (2024). DOI: https://doi.org/10.1002/mma.9636
  • [12] Çetin, N., “On complex modified Bernstein-Stancu operators”, Mathematical Foundations of Computing, 6(1): 63–77, (2023). DOI: https://doi.org/10.3934/mfc.2021043
  • [13] Çetin, N., “Approximation by α-Bernstein-Schurer operator”, Hacettepe Journal of Mathematics & Statistics, 50(3): 732–743, (2021). DOI: https://doi.org/10.15672/hujms.626905
  • [14] Bărbosu, D., Bărbosu, M., “Simultaneous approximation by Schurer type operators”, Carpathian Journal of Mathematics, 19(1): 1–6, (2003).
There are 14 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables), Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Nursel Çetin 0000-0003-3771-6523

Early Pub Date November 15, 2025
Publication Date December 1, 2025
Submission Date December 8, 2024
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 38 Issue: 4

Cite

APA Çetin, N. (2025). Complex Perturbed Bernstein-Schurer-Type Operators. Gazi University Journal of Science, 38(4), 2065-2077. https://doi.org/10.35378/gujs.1598374
AMA Çetin N. Complex Perturbed Bernstein-Schurer-Type Operators. Gazi University Journal of Science. December 2025;38(4):2065-2077. doi:10.35378/gujs.1598374
Chicago Çetin, Nursel. “Complex Perturbed Bernstein-Schurer-Type Operators”. Gazi University Journal of Science 38, no. 4 (December 2025): 2065-77. https://doi.org/10.35378/gujs.1598374.
EndNote Çetin N (December 1, 2025) Complex Perturbed Bernstein-Schurer-Type Operators. Gazi University Journal of Science 38 4 2065–2077.
IEEE N. Çetin, “Complex Perturbed Bernstein-Schurer-Type Operators”, Gazi University Journal of Science, vol. 38, no. 4, pp. 2065–2077, 2025, doi: 10.35378/gujs.1598374.
ISNAD Çetin, Nursel. “Complex Perturbed Bernstein-Schurer-Type Operators”. Gazi University Journal of Science 38/4 (December2025), 2065-2077. https://doi.org/10.35378/gujs.1598374.
JAMA Çetin N. Complex Perturbed Bernstein-Schurer-Type Operators. Gazi University Journal of Science. 2025;38:2065–2077.
MLA Çetin, Nursel. “Complex Perturbed Bernstein-Schurer-Type Operators”. Gazi University Journal of Science, vol. 38, no. 4, 2025, pp. 2065-77, doi:10.35378/gujs.1598374.
Vancouver Çetin N. Complex Perturbed Bernstein-Schurer-Type Operators. Gazi University Journal of Science. 2025;38(4):2065-77.