Research Article
BibTex RIS Cite

Effect of ZrO2 on Radiation Permeability Properties of Polypropylene

Year 2024, , 407 - 418, 29.06.2024
https://doi.org/10.54287/gujsa.1475116

Abstract

The study investigates the radiation permeability properties including mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), tenth value layer (TVL), half value layer (HVL), fast neutron cross section (FNRC), and mean free path (MFP) of polypropylene (PP) polymer, as well as the produced polymer matrix composites (PP+5% ZrO2, PP+10% ZrO2, PP+15% ZrO2). The studied materials were examined by considering their effect on radiation permeability against gamma and neutron radiation. Additionally, powder size, Archimedes principle (density), XRD, DSC, ATR, and DTA-TG analyses were performed. According to the radiation permeability results of the studied four materials, PP + 15% ZrO2 was found to have the highest LAC values, while PP was found to have the lowest LAC values. The FNRC values of the PP, PP+5% ZrO2, PP+10% ZrO2, and PP+15% ZrO2 materials were found to be 10.038 cm-1, 12.651 cm-1, 15.002 cm-1, and 17.091 cm-1, respectively. The most suitable material for gamma and neutron shielding was found to be 15% ZrO2 reinforced material.

Supporting Institution

GAZİ BAP

Project Number

FKA-2023-8617

Thanks

The researchers would like to express their gratitude for the financial support of the Scientific Research Projects Office of Gazi University, TÜRKİYE (Project number: FKA-2023-8617), TÜBİTAK 2211-C program, and YÖK 100/2000 program.

References

  • Akinci, A. & Akbulut, H. & Yilmaz, F. (2007). The Effect of the Red Mud on Polymer Crystallization and the Interaction between the Polymer-Filler. Polymer-Plastics Technology and Engineering, 46(1), 31-36. https://doi.org/10.1080/03602550600916258
  • Akman, F., Ogul, H., Ozkan, I., Kaçal, M. R., Agar, O., Polat, H., & Dilsiz, K. (2022). Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54(1), 283-292. https://doi.org/10.1016/j.net.2021.07.006
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., Al-Odayni, A.-B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17(1), 100793. https://doi.org/10.1016/j.jrras.2023.100793
  • Alzahrani, J. S., Lebedev, A. V., Avanesov, S. A., Hammoud, A., Alrowaili, Z. A., Mahmoud, Z. M. M., Olarinoye, I. O., & Al-Buriahi, M. S. (2022). Synthesis and properties of tellurite based glasses containing Na2O, BaO, and TiO2: Raman, UV and neutron/charged particle shielding assessments. Ceramics International, 48(13), 18330-18337. https://doi.org/10.1016/j.ceramint.2022.03.092
  • Ardiansyah, A., Heryanto, H., Armynah, B., Salah, H., Sulieman, A., Bradley, D. A., & Tahir, D. (2023). Physical, mechanical, optical, and gamma radiation shielding properties of the BaO-based glass system prepared by the melt-quench technique: A review. Radiation Physics and Chemistry, 210, 111059. https://doi.org/10.1016/j.radphyschem.2023.111059
  • Cho, K., Li, F., & Choi, J. (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer, 40(7), 1719-1729. https://doi.org/10.1016/S0032-3861(98)00404-2
  • Kamislioglu, M. (2021). Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results in Physics, 22, 103844. https://doi.org/10.1016/j.rinp.2021.103844
  • Kavun, Y., Kerli, S., Eskalen, H., & Kavgacı, M. (2022). Characterization and nuclear shielding performance of Sm doped In₂O₃ thin films. Radiation Physics and Chemistry, 194, 110014. https://doi.org/10.1016/j.radphyschem.2022.110014
  • Kılıçoğlu, O., & Tekin, H. O. (2020). Bioactive glasses with TiO2 additive: Behavior characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8-Part A), 10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
  • Krylova, V. & Dukštienė, N. (2013). Synthesis and Characterization of Ag2S Layers Formed on Polypropylene. Journal of Chemistry, 2013(1), 987879. https://doi.org/10.1155/2013/987879
  • Labour, T., Gauthier, C., Séguéla, R., Vigier, G., Bomal, Y., & Orange, G. (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer, 42(16), 7127-7135. https://doi.org/10.1016/S0032-3861(01)00089-1
  • Malidarre, R. B., Akkurt, İ., & Kavas, T. (2021). Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for Alumino-Boro-Silicate glasses. Radiation Physics and Chemistry, 186, 109540. https://doi.org/10.1016/j.radphyschem.2021.109540
  • Mingliang, G., Demin, J., & Weibing, X. (2007). Study on the Crystallization Properties of Polypropylene/Montmorillonite Composites. Polymer-Plastics Technology and Engineering, 46(10), 985-990. https://doi.org/10.1080/03602550701519449
  • Papageorgiou, D. G., Bikiaris, D. N., & Chrissafis, K. (2012). Effect of crystalline structure of polypropylene random copolymers on mechanical properties and thermal degradation kinetics. Thermochimica Acta, 543, 288-294. https://doi.org/10.1016/j.tca.2012.06.007
  • Szondy, B., Bodnár, B., Grossetête, A., Gain, T., & Aszódi, A. (2024). Review of solutions developed for improving maneuvering flexibility in German, French and Russian PWRs targeting to explore future possibilities for the new VVER-1200 nuclear power plant units in Hungary. Nuclear Engineering and Design, 419, 112965. https://doi.org/10.1016/j.nucengdes.2024.112965
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy- X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., & Lahoti, M. (2021). Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards. Journal of Hazardous Materials, 404(Part B), 124201. https://doi.org/10.1016/j.jhazmat.2020.124201
Year 2024, , 407 - 418, 29.06.2024
https://doi.org/10.54287/gujsa.1475116

Abstract

Project Number

FKA-2023-8617

References

  • Akinci, A. & Akbulut, H. & Yilmaz, F. (2007). The Effect of the Red Mud on Polymer Crystallization and the Interaction between the Polymer-Filler. Polymer-Plastics Technology and Engineering, 46(1), 31-36. https://doi.org/10.1080/03602550600916258
  • Akman, F., Ogul, H., Ozkan, I., Kaçal, M. R., Agar, O., Polat, H., & Dilsiz, K. (2022). Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54(1), 283-292. https://doi.org/10.1016/j.net.2021.07.006
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., Al-Odayni, A.-B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17(1), 100793. https://doi.org/10.1016/j.jrras.2023.100793
  • Alzahrani, J. S., Lebedev, A. V., Avanesov, S. A., Hammoud, A., Alrowaili, Z. A., Mahmoud, Z. M. M., Olarinoye, I. O., & Al-Buriahi, M. S. (2022). Synthesis and properties of tellurite based glasses containing Na2O, BaO, and TiO2: Raman, UV and neutron/charged particle shielding assessments. Ceramics International, 48(13), 18330-18337. https://doi.org/10.1016/j.ceramint.2022.03.092
  • Ardiansyah, A., Heryanto, H., Armynah, B., Salah, H., Sulieman, A., Bradley, D. A., & Tahir, D. (2023). Physical, mechanical, optical, and gamma radiation shielding properties of the BaO-based glass system prepared by the melt-quench technique: A review. Radiation Physics and Chemistry, 210, 111059. https://doi.org/10.1016/j.radphyschem.2023.111059
  • Cho, K., Li, F., & Choi, J. (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer, 40(7), 1719-1729. https://doi.org/10.1016/S0032-3861(98)00404-2
  • Kamislioglu, M. (2021). Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results in Physics, 22, 103844. https://doi.org/10.1016/j.rinp.2021.103844
  • Kavun, Y., Kerli, S., Eskalen, H., & Kavgacı, M. (2022). Characterization and nuclear shielding performance of Sm doped In₂O₃ thin films. Radiation Physics and Chemistry, 194, 110014. https://doi.org/10.1016/j.radphyschem.2022.110014
  • Kılıçoğlu, O., & Tekin, H. O. (2020). Bioactive glasses with TiO2 additive: Behavior characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8-Part A), 10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
  • Krylova, V. & Dukštienė, N. (2013). Synthesis and Characterization of Ag2S Layers Formed on Polypropylene. Journal of Chemistry, 2013(1), 987879. https://doi.org/10.1155/2013/987879
  • Labour, T., Gauthier, C., Séguéla, R., Vigier, G., Bomal, Y., & Orange, G. (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer, 42(16), 7127-7135. https://doi.org/10.1016/S0032-3861(01)00089-1
  • Malidarre, R. B., Akkurt, İ., & Kavas, T. (2021). Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for Alumino-Boro-Silicate glasses. Radiation Physics and Chemistry, 186, 109540. https://doi.org/10.1016/j.radphyschem.2021.109540
  • Mingliang, G., Demin, J., & Weibing, X. (2007). Study on the Crystallization Properties of Polypropylene/Montmorillonite Composites. Polymer-Plastics Technology and Engineering, 46(10), 985-990. https://doi.org/10.1080/03602550701519449
  • Papageorgiou, D. G., Bikiaris, D. N., & Chrissafis, K. (2012). Effect of crystalline structure of polypropylene random copolymers on mechanical properties and thermal degradation kinetics. Thermochimica Acta, 543, 288-294. https://doi.org/10.1016/j.tca.2012.06.007
  • Szondy, B., Bodnár, B., Grossetête, A., Gain, T., & Aszódi, A. (2024). Review of solutions developed for improving maneuvering flexibility in German, French and Russian PWRs targeting to explore future possibilities for the new VVER-1200 nuclear power plant units in Hungary. Nuclear Engineering and Design, 419, 112965. https://doi.org/10.1016/j.nucengdes.2024.112965
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy- X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., & Lahoti, M. (2021). Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards. Journal of Hazardous Materials, 404(Part B), 124201. https://doi.org/10.1016/j.jhazmat.2020.124201
There are 17 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Metallurgical and Materials Engineering
Authors

Zübeyde Özkan 0000-0003-2901-7749

Berkay Çakır 0009-0001-5500-9438

Seda Gürgen Avşar 0009-0008-9991-7236

Emir Olçay 0009-0009-5257-6929

Uğur Gökmen 0000-0002-6903-0297

Project Number FKA-2023-8617
Early Pub Date June 28, 2024
Publication Date June 29, 2024
Submission Date April 29, 2024
Acceptance Date June 5, 2024
Published in Issue Year 2024

Cite

APA Özkan, Z., Çakır, B., Gürgen Avşar, S., Olçay, E., et al. (2024). Effect of ZrO2 on Radiation Permeability Properties of Polypropylene. Gazi University Journal of Science Part A: Engineering and Innovation, 11(2), 407-418. https://doi.org/10.54287/gujsa.1475116