Research Article
BibTex RIS Cite

Pattern Recognition in Blast Cells by Improved Image Processing Techniques

Year 2025, Volume: 12 Issue: 4, 935 - 952, 31.12.2025
https://doi.org/10.54287/gujsa.1735961

Abstract

Acute lymphoblastic leukemia (ALL) is a critical type of cancer affecting white blood cell development. It is characterized by the disruption of normal stem cell maturation processes or the excessive proliferation of leukemic cells. As the most common childhood cancer, ALL is a significant health problem requiring continuous clinical monitoring. A major challenge in diagnosing the disease stems from the non-specific nature of the initial symptoms. Common symptoms, such as fever, fatigue, headache, weight loss, and musculoskeletal disorders, can mimic many diseases, making diagnostic accuracy challenging. This ambiguity leads to delayed diagnosis and negatively impacts treatment success. Although the incidence of leukemia has increased in recent years, advances in medical technology have shown promising results in reducing mortality rates. Health information systems play a significant role in this success by facilitating early disease diagnosis. In our research, two different image enhancement methods were developed to highlight the characteristics of blast cells, a critical indicator for the diagnosis of ALL. Three image groups were evaluated: unprocessed original images and two different processed image sets (versions 1 and 2). Classification performed using the MobileNetv2 transfer learning framework achieved accuracy rates of 85%, 90%, and 89% on the test dataset, respectively. To enhance diagnostic reliability beyond single-model performance, an ensemble architecture combining eight different transfer learning networks was created. This optimized ensemble model, using images enhanced with the high-performing version 1 filter, achieved approximately 90% classification accuracy. This result represents a significant advancement in AI-assisted hematological image interpretation.

References

  • Abunadi, I., & Senan, E. M. (2022). Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques. Sensors, 22(4), 1629. https://doi.org/10.3390/S22041629
  • Akalin, F. (2023). Classification of Main Types of Leukemia Disease with Artificial Intelligence-Based Algorithms on the DNA Sequences Using Digital Mapping Techniques (Sayısal Haritalama Teknikleri Kullanılarak DNA Dizilimleri Üzerinden Lösemi Hastalığının Temel Türlerinin Yapay Zeka Tabanlı Algoritmalar ile Sınıflandırılması). PhD Thesis, Sakarya University.
  • Akalin, F., & Yumusak, N. (2024). Derin öğrenme tabanlı topluluk sınıflandırıcı yaklaşımı ile gastrointestinal anomalilerin tespiti. Pamukkale University Journal of Engineering Sciences, 30(3), 366–373. https://doi.org/10.5505/pajes.2023.90602
  • ALL-IDB, Acute Lymphoblastic Leukemia Image Database for Image Processing. (2024, June 30). https://scotti.di.unimi.it/all/
  • Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., & Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405. https://doi.org/10.1182/BLOOD-2016-03-643544
  • Aryal, S., Kumar Naik, S., Madarapu, S., & Ari, S. (2025). AFMNet: Adaptive feature modulation network for classification of white blood cells. Biocybernetics and Biomedical Engineering, 45(3), 539–548. https://doi.org/10.1016/j.bbe.2025.07.006
  • Bain, B. J. (2005). Diagnosis from the Blood Smear. The New England Journal of Medicine, 353(5), 498–507. https://doi.org/10.1056/NEJMRA043442
  • Das, P. K., Sahu, A., Meher, S., Panda, R., & Abraham, A. (2025). Enhanced detection of acute leukemia: A hybrid machine learning framework with adaptive weight-optimized level set evolution. Engineering Applications of Artificial Intelligence, 161, 112244. https://doi.org/10.1016/j.engappai.2025.112244
  • Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241–258. https://doi.org/10.1007/s11704-019-8208-z
  • Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
  • Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing. Pearson Education Limited.
  • Hunger, S. P., & Mullighan, C. G. (2015). Acute Lymphoblastic Leukemia in Children. The New England Journal of Medicine, 373(16), 1541–1552. https://doi.org/10.1056/NEJMRA1400972
  • Jawahar, M., H, S., L, J. A., & Gandomi, A. H. (2022). ALNett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification. Computers in Biology and Medicine, 148, 105894. https://doi.org/10.1016/j.compbiomed.2022.105894
  • Jiwani, N., Gupta, K., Pau, G., & Alibakhshikenari, M. (2023). Pattern Recognition of Acute Lymphoblastic Leukemia (ALL) Using Computational Deep Learning. IEEE Access, 11, 29541–29553. https://doi.org/10.1109/ACCESS.2023.3260065
  • Khandekar, R., Shastry, P., Jaishankar, S., Faust, O., & Sampathila, N. (2021). Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomedical Signal Processing and Control, 68, 102690. https://doi.org/10.1016/j.bspc.2021.102690
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Maini, R., & Aggarwal, H. (2010). A Comprehensive Review of Image Enhancement Techniques. Journal of Computing, 2(3), 8-13. https://doi.org/10.48550/arXiv.1003.4053
  • Malard, F., & Mohty, M. (2020). Acute lymphoblastic leukaemia. The Lancet, 395(10230), 1146–1162. https://doi.org/10.1016/S0140-6736(19)33018-1
  • Merino, A., Puigví, L., Boldú, L., Alférez, S., & Rodellar, J. (2018). Optimizing morphology through blood cell image analysis. International Journal of Laboratory Hematology, 40(S1), 54–61. https://doi.org/10.1111/ijlh.12832
  • Scotti, F. (2005, July 20-22). Automatic Morphological Analysis for Acute Leukemia Identification in Peripheral Blood Microscope Images. In: CIMSA 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (pp. 96-101), Messian, Italy. https://doi.org/10.1109/CIMSA.2005.1522835
  • Negm, A. S., Hassan, O. A., & Kandil, A. H. (2018). A decision support system for Acute Leukaemia classification based on digital microscopic images. Alexandria Engineering Journal, 57(4), 2319–2332. https://doi.org/10.1016/J.AEJ.2017.08.025
  • Patel, N., & Mishra, A. (2015). Automated Leukaemia Detection Using Microscopic Images. Procedia Computer Science, 58, 635–642. https://doi.org/10.1016/J.PROCS.2015.08.082
  • Pervez, K., Sohail, S. I., Parwez, F., & Zia, M. A. (2025). Towards trustworthy AI-driven leukemia diagnosis: A hybrid Hierarchical Federated Learning and explainable AI framework. Informatics in Medicine Unlocked, 53, 101618. https://doi.org/10.1016/j.imu.2025.101618
  • Piazzese, C., Williams, S., Slabaugh, G., Farren, T., Freeman, T., Aiken, L., Dadhra, J., Browne, S., Deltadahl, S., & Sivapalaratnam, S. (2025). BloodImage: Benchmarking vision transformers for blast detection in digital blood films using public and clinical datasets. Journal of Pathology Informatics, 19, 100525. https://doi.org/10.1016/j.jpi.2025.100525
  • Piuri, V., & Scotti, F. (2004, July 14-16). Morphological Classification of Blood Leucocytes by Microscope Images. In: 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (pp. 103-108), Boston, MA, USA. https://doi.org/10.1109/CIMSA.2004.1397242
  • Prinyakupt, J., & Pluempitiwiriyawej, C. (2015). Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. BioMedical Engineering Online, 14(1), 63. https://doi.org/10.1186/s12938-015-0037-1
  • Pui, C.-H., & Evans, W. E. (2013). A 50-year journey to cure childhood acute lymphoblastic leukemia. Seminars in Hematology, 50(3), 185–196. https://doi.org/10.1053/j.seminhematol.2013.06.007
  • Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0
  • Rashid, J., Ishfaq, M., Ali, G., Saeed, M. R., Hussain, M., Alkhalifah, T., Alturise, F., & Samand, N. (2022). Skin Cancer Disease Detection using Transfer Learning Technique. Applied Sciences (Switzerland), 12(11), 5714. https://doi.org/10.3390/app12115714
  • Rundo, L., Han, C., Nagano, Y., Zhang, J., Hataya, R., Militello, C., Tangherloni, A., Nobile, M. S., Ferretti, C., Besozzi, D., Gilardi, M. C., Vitabile, S., Mauri, G., Nakayama, H., & Cazzaniga, P. (2019). USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing, 365, 31-43. https://doi.org/10.1016/J.NEUCOM.2019.07.006
  • Scotti, F. (2006, April 24-27). Robust Segmentation and Measurements Techniques of White Cells in Blood Microscope Images. In: 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings (pp. 43-48), Sorrento, Italy. https://doi.org/10.1109/IMTC.2006.328170
  • Shinde, S., Sharma, N., Bansod, P., Singh, M., & Singh Tekam, C. K. (2020, February 28-29). Automated nucleus segmentation of leukemia blast cells : Color spaces study. In: 2nd International Conference on Data, Engineering and Applications (IDEA) (pp. 1-5), Bhopal, India. https://doi.org/10.1109/IDEA49133.2020.9170721
  • Sonti, K., & Dhuli, R. (2022, February 12-14). Pattern Based Glaucoma Classification Approach using Statistical Texture Features. In: 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP) (pp. 1-8), Vijayawada, India. https://doi.org/10.1109/AISP53593.2022.9760664
  • Stentoft, J. (2020). Leukaemia Diagnosis, fifth edition. Barbara J.Bain, Wiley Blackwell,2017. ISBN 9781119210542 (cloth, 559 pages). Also available as e‐book. British Journal of Haematology, 188(1), 169. https://doi.org/10.1111/BJH.16351
  • Ward, E., DeSantis, C., Robbins, A., Kohler, B., & Jemal, A. (2014). Childhood and adolescent cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(2), 83–103. https://doi.org/10.3322/CAAC.21219
  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
There are 36 citations in total.

Details

Primary Language English
Subjects Biomedical Diagnosis
Journal Section Research Article
Authors

Fatma Akalın 0000-0001-6670-915X

Mehmet Fatih Orhan 0000-0001-8081-6760

Submission Date July 6, 2025
Acceptance Date November 24, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Akalın, F., & Orhan, M. F. (2025). Pattern Recognition in Blast Cells by Improved Image Processing Techniques. Gazi University Journal of Science Part A: Engineering and Innovation, 12(4), 935-952. https://doi.org/10.54287/gujsa.1735961